Cargando…
Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces
Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740478/ https://www.ncbi.nlm.nih.gov/pubmed/26842791 http://dx.doi.org/10.1186/s11671-016-1285-0 |
_version_ | 1782413854624448512 |
---|---|
author | Zhitlukhina, E. Devyatov, I. Egorov, O. Belogolovskii, M. Seidel, P. |
author_facet | Zhitlukhina, E. Devyatov, I. Egorov, O. Belogolovskii, M. Seidel, P. |
author_sort | Zhitlukhina, E. |
collection | PubMed |
description | Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an effect of a degraded nanoscaled sheath at the superconductor surface. A model capturing the main aspects of the ballistic charge transport across hybrid superconducting structures with normally conducting nanometer-thick interlayers is proposed. The calculations are based on a scattering formalism taking into account Andreev electron-into-hole (and inverse) reflections at normal metal-superconductor interfaces as well as transmission and backscattering events in insulating barriers between the electrodes. Current-voltage characteristics of such devices exhibit a rich diversity of anomalous (from the viewpoint of the standard theory) features, in particular shift of differential-conductance maxima at gap voltages to lower positions and appearance of well-defined dips instead expected coherence peaks. We compare our results with related experimental data. |
format | Online Article Text |
id | pubmed-4740478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-47404782016-02-16 Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces Zhitlukhina, E. Devyatov, I. Egorov, O. Belogolovskii, M. Seidel, P. Nanoscale Res Lett Nano Express Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an effect of a degraded nanoscaled sheath at the superconductor surface. A model capturing the main aspects of the ballistic charge transport across hybrid superconducting structures with normally conducting nanometer-thick interlayers is proposed. The calculations are based on a scattering formalism taking into account Andreev electron-into-hole (and inverse) reflections at normal metal-superconductor interfaces as well as transmission and backscattering events in insulating barriers between the electrodes. Current-voltage characteristics of such devices exhibit a rich diversity of anomalous (from the viewpoint of the standard theory) features, in particular shift of differential-conductance maxima at gap voltages to lower positions and appearance of well-defined dips instead expected coherence peaks. We compare our results with related experimental data. Springer US 2016-02-03 /pmc/articles/PMC4740478/ /pubmed/26842791 http://dx.doi.org/10.1186/s11671-016-1285-0 Text en © Zhitlukhina et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Nano Express Zhitlukhina, E. Devyatov, I. Egorov, O. Belogolovskii, M. Seidel, P. Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces |
title | Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces |
title_full | Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces |
title_fullStr | Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces |
title_full_unstemmed | Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces |
title_short | Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces |
title_sort | anomalous inner-gap structure in transport characteristics of superconducting junctions with degraded interfaces |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740478/ https://www.ncbi.nlm.nih.gov/pubmed/26842791 http://dx.doi.org/10.1186/s11671-016-1285-0 |
work_keys_str_mv | AT zhitlukhinae anomalousinnergapstructureintransportcharacteristicsofsuperconductingjunctionswithdegradedinterfaces AT devyatovi anomalousinnergapstructureintransportcharacteristicsofsuperconductingjunctionswithdegradedinterfaces AT egorovo anomalousinnergapstructureintransportcharacteristicsofsuperconductingjunctionswithdegradedinterfaces AT belogolovskiim anomalousinnergapstructureintransportcharacteristicsofsuperconductingjunctionswithdegradedinterfaces AT seidelp anomalousinnergapstructureintransportcharacteristicsofsuperconductingjunctionswithdegradedinterfaces |