Cargando…

Solution of fractional bioheat equation in terms of Fox’s H-function

Present paper deals with the solution of time and space fractional Pennes bioheat equation. We consider time fractional derivative and space fractional derivative in the form of Caputo fractional derivative of order [Formula: see text] and Riesz–Feller fractional derivative of order [Formula: see te...

Descripción completa

Detalles Bibliográficos
Autores principales: Damor, R. S., Kumar, Sushil, Shukla, A. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740486/
https://www.ncbi.nlm.nih.gov/pubmed/26885464
http://dx.doi.org/10.1186/s40064-016-1743-2
_version_ 1782413856395493376
author Damor, R. S.
Kumar, Sushil
Shukla, A. K.
author_facet Damor, R. S.
Kumar, Sushil
Shukla, A. K.
author_sort Damor, R. S.
collection PubMed
description Present paper deals with the solution of time and space fractional Pennes bioheat equation. We consider time fractional derivative and space fractional derivative in the form of Caputo fractional derivative of order [Formula: see text] and Riesz–Feller fractional derivative of order [Formula: see text] respectively. We obtain solution in terms of Fox’s H-function with some special cases, by using Fourier–Laplace transforms.
format Online
Article
Text
id pubmed-4740486
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-47404862016-02-16 Solution of fractional bioheat equation in terms of Fox’s H-function Damor, R. S. Kumar, Sushil Shukla, A. K. Springerplus Research Present paper deals with the solution of time and space fractional Pennes bioheat equation. We consider time fractional derivative and space fractional derivative in the form of Caputo fractional derivative of order [Formula: see text] and Riesz–Feller fractional derivative of order [Formula: see text] respectively. We obtain solution in terms of Fox’s H-function with some special cases, by using Fourier–Laplace transforms. Springer International Publishing 2016-02-03 /pmc/articles/PMC4740486/ /pubmed/26885464 http://dx.doi.org/10.1186/s40064-016-1743-2 Text en © Damor et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Damor, R. S.
Kumar, Sushil
Shukla, A. K.
Solution of fractional bioheat equation in terms of Fox’s H-function
title Solution of fractional bioheat equation in terms of Fox’s H-function
title_full Solution of fractional bioheat equation in terms of Fox’s H-function
title_fullStr Solution of fractional bioheat equation in terms of Fox’s H-function
title_full_unstemmed Solution of fractional bioheat equation in terms of Fox’s H-function
title_short Solution of fractional bioheat equation in terms of Fox’s H-function
title_sort solution of fractional bioheat equation in terms of fox’s h-function
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740486/
https://www.ncbi.nlm.nih.gov/pubmed/26885464
http://dx.doi.org/10.1186/s40064-016-1743-2
work_keys_str_mv AT damorrs solutionoffractionalbioheatequationintermsoffoxshfunction
AT kumarsushil solutionoffractionalbioheatequationintermsoffoxshfunction
AT shuklaak solutionoffractionalbioheatequationintermsoffoxshfunction