Cargando…

Crimean-Congo Hemorrhagic Fever Virus Gn Bioinformatic Analysis and Construction of a Recombinant Bacmid in Order to Express Gn by Baculovirus Expression System

BACKGROUND: Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahpeyma, Mehdi, Fotouhi, Fatemeh, Makvandi, Manouchehr, Ghadiri, Ata, Samarbaf-Zadeh, Alireza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Kowsar 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740762/
https://www.ncbi.nlm.nih.gov/pubmed/26862379
http://dx.doi.org/10.5812/jjm.25502
Descripción
Sumario:BACKGROUND: Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. OBJECTIVES: The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. MATERIALS AND METHODS: To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. RESULTS: Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. CONCLUSIONS: Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV.