Cargando…
A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid
Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740768/ https://www.ncbi.nlm.nih.gov/pubmed/26841717 http://dx.doi.org/10.1038/srep20400 |
_version_ | 1782413884746891264 |
---|---|
author | Chen, Peng Yan, Lei Wu, Zhengrong Li, Suyue Bai, Zhongtian Yan, Xiaojuan Wang, Ningbo Liang, Ning Li, Hongyu |
author_facet | Chen, Peng Yan, Lei Wu, Zhengrong Li, Suyue Bai, Zhongtian Yan, Xiaojuan Wang, Ningbo Liang, Ning Li, Hongyu |
author_sort | Chen, Peng |
collection | PubMed |
description | Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. |
format | Online Article Text |
id | pubmed-4740768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47407682016-02-09 A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid Chen, Peng Yan, Lei Wu, Zhengrong Li, Suyue Bai, Zhongtian Yan, Xiaojuan Wang, Ningbo Liang, Ning Li, Hongyu Sci Rep Article Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. Nature Publishing Group 2016-02-04 /pmc/articles/PMC4740768/ /pubmed/26841717 http://dx.doi.org/10.1038/srep20400 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Chen, Peng Yan, Lei Wu, Zhengrong Li, Suyue Bai, Zhongtian Yan, Xiaojuan Wang, Ningbo Liang, Ning Li, Hongyu A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid |
title | A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid |
title_full | A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid |
title_fullStr | A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid |
title_full_unstemmed | A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid |
title_short | A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid |
title_sort | microbial transformation using bacillus subtilis b7-s to produce natural vanillin from ferulic acid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740768/ https://www.ncbi.nlm.nih.gov/pubmed/26841717 http://dx.doi.org/10.1038/srep20400 |
work_keys_str_mv | AT chenpeng amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT yanlei amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT wuzhengrong amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT lisuyue amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT baizhongtian amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT yanxiaojuan amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT wangningbo amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT liangning amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT lihongyu amicrobialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT chenpeng microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT yanlei microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT wuzhengrong microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT lisuyue microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT baizhongtian microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT yanxiaojuan microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT wangningbo microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT liangning microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid AT lihongyu microbialtransformationusingbacillussubtilisb7stoproducenaturalvanillinfromferulicacid |