Cargando…

Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures

High-entropy alloys are an intriguing new class of metallic materials that derive their properties from being multi-element systems that can crystallize as a single phase, despite containing high concentrations of five or more elements with different crystal structures. Here we examine an equiatomic...

Descripción completa

Detalles Bibliográficos
Autores principales: Gludovatz, Bernd, Hohenwarter, Anton, Thurston, Keli V. S., Bei, Hongbin, Wu, Zhenggang, George, Easo P., Ritchie, Robert O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740901/
https://www.ncbi.nlm.nih.gov/pubmed/26830651
http://dx.doi.org/10.1038/ncomms10602
Descripción
Sumario:High-entropy alloys are an intriguing new class of metallic materials that derive their properties from being multi-element systems that can crystallize as a single phase, despite containing high concentrations of five or more elements with different crystal structures. Here we examine an equiatomic medium-entropy alloy containing only three elements, CrCoNi, as a single-phase face-centred cubic solid solution, which displays strength-toughness properties that exceed those of all high-entropy alloys and most multi-phase alloys. At room temperature, the alloy shows tensile strengths of almost 1 GPa, failure strains of ∼70% and K(JIc) fracture-toughness values above 200 MPa  m(1/2); at cryogenic temperatures strength, ductility and toughness of the CrCoNi alloy improve to strength levels above 1.3 GPa, failure strains up to 90% and K(JIc) values of 275 MPa  m(1/2). Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.