Cargando…
Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars
Prior to language, human infants are prolific imitators. Developmental science grounds infant imitation in the neural coding of actions, and highlights the use of imitation for learning from and about people. Here, we used computational modeling and a robot implementation to explore the functional v...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741103/ https://www.ncbi.nlm.nih.gov/pubmed/26844862 http://dx.doi.org/10.1038/srep19908 |
_version_ | 1782413946434617344 |
---|---|
author | Boucenna, Sofiane Cohen, David Meltzoff, Andrew N. Gaussier, Philippe Chetouani, Mohamed |
author_facet | Boucenna, Sofiane Cohen, David Meltzoff, Andrew N. Gaussier, Philippe Chetouani, Mohamed |
author_sort | Boucenna, Sofiane |
collection | PubMed |
description | Prior to language, human infants are prolific imitators. Developmental science grounds infant imitation in the neural coding of actions, and highlights the use of imitation for learning from and about people. Here, we used computational modeling and a robot implementation to explore the functional value of action imitation. We report 3 experiments using a mutual imitation task between robots, adults, typically developing children, and children with Autism Spectrum Disorder. We show that a particular learning architecture - specifically one combining artificial neural nets for (i) extraction of visual features, (ii) the robot’s motor internal state, (iii) posture recognition, and (iv) novelty detection - is able to learn from an interactive experience involving mutual imitation. This mutual imitation experience allowed the robot to recognize the interactive agent in a subsequent encounter. These experiments using robots as tools for modeling human cognitive development, based on developmental theory, confirm the promise of developmental robotics. Additionally, findings illustrate how person recognition may emerge through imitative experience, intercorporeal mapping, and statistical learning. |
format | Online Article Text |
id | pubmed-4741103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47411032016-02-09 Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars Boucenna, Sofiane Cohen, David Meltzoff, Andrew N. Gaussier, Philippe Chetouani, Mohamed Sci Rep Article Prior to language, human infants are prolific imitators. Developmental science grounds infant imitation in the neural coding of actions, and highlights the use of imitation for learning from and about people. Here, we used computational modeling and a robot implementation to explore the functional value of action imitation. We report 3 experiments using a mutual imitation task between robots, adults, typically developing children, and children with Autism Spectrum Disorder. We show that a particular learning architecture - specifically one combining artificial neural nets for (i) extraction of visual features, (ii) the robot’s motor internal state, (iii) posture recognition, and (iv) novelty detection - is able to learn from an interactive experience involving mutual imitation. This mutual imitation experience allowed the robot to recognize the interactive agent in a subsequent encounter. These experiments using robots as tools for modeling human cognitive development, based on developmental theory, confirm the promise of developmental robotics. Additionally, findings illustrate how person recognition may emerge through imitative experience, intercorporeal mapping, and statistical learning. Nature Publishing Group 2016-02-04 /pmc/articles/PMC4741103/ /pubmed/26844862 http://dx.doi.org/10.1038/srep19908 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Boucenna, Sofiane Cohen, David Meltzoff, Andrew N. Gaussier, Philippe Chetouani, Mohamed Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars |
title | Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars |
title_full | Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars |
title_fullStr | Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars |
title_full_unstemmed | Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars |
title_short | Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars |
title_sort | robots learn to recognize individuals from imitative encounters with people and avatars |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741103/ https://www.ncbi.nlm.nih.gov/pubmed/26844862 http://dx.doi.org/10.1038/srep19908 |
work_keys_str_mv | AT boucennasofiane robotslearntorecognizeindividualsfromimitativeencounterswithpeopleandavatars AT cohendavid robotslearntorecognizeindividualsfromimitativeencounterswithpeopleandavatars AT meltzoffandrewn robotslearntorecognizeindividualsfromimitativeencounterswithpeopleandavatars AT gaussierphilippe robotslearntorecognizeindividualsfromimitativeencounterswithpeopleandavatars AT chetouanimohamed robotslearntorecognizeindividualsfromimitativeencounterswithpeopleandavatars |