Cargando…
Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification
The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β‐catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhib...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741304/ https://www.ncbi.nlm.nih.gov/pubmed/26675138 http://dx.doi.org/10.15252/embj.201592116 |
_version_ | 1782413977843662848 |
---|---|
author | Morrison, Gillian Scognamiglio, Roberta Trumpp, Andreas Smith, Austin |
author_facet | Morrison, Gillian Scognamiglio, Roberta Trumpp, Andreas Smith, Austin |
author_sort | Morrison, Gillian |
collection | PubMed |
description | The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β‐catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and β‐catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild‐type cells, cMyc contributes by reducing Tcf7l1 mRNA, while β‐catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/β‐catenin‐Tcf7l1‐FoxA2 axis reveals a de‐repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho‐logical contexts. |
format | Online Article Text |
id | pubmed-4741304 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-47413042016-04-14 Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification Morrison, Gillian Scognamiglio, Roberta Trumpp, Andreas Smith, Austin EMBO J Articles The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β‐catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and β‐catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild‐type cells, cMyc contributes by reducing Tcf7l1 mRNA, while β‐catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/β‐catenin‐Tcf7l1‐FoxA2 axis reveals a de‐repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho‐logical contexts. John Wiley and Sons Inc. 2015-12-16 2016-02-01 /pmc/articles/PMC4741304/ /pubmed/26675138 http://dx.doi.org/10.15252/embj.201592116 Text en © 2015 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Morrison, Gillian Scognamiglio, Roberta Trumpp, Andreas Smith, Austin Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification |
title | Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification |
title_full | Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification |
title_fullStr | Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification |
title_full_unstemmed | Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification |
title_short | Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification |
title_sort | convergence of cmyc and β‐catenin on tcf7l1 enables endoderm specification |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741304/ https://www.ncbi.nlm.nih.gov/pubmed/26675138 http://dx.doi.org/10.15252/embj.201592116 |
work_keys_str_mv | AT morrisongillian convergenceofcmycandbcateninontcf7l1enablesendodermspecification AT scognamiglioroberta convergenceofcmycandbcateninontcf7l1enablesendodermspecification AT trumppandreas convergenceofcmycandbcateninontcf7l1enablesendodermspecification AT smithaustin convergenceofcmycandbcateninontcf7l1enablesendodermspecification |