Cargando…

Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression

Deficiency of tumor suppressor FLCN leads to the activation of the mTOR signaling pathway in human BHD-associated renal cell carcinomas (RCC). We have previously developed a renal distal tubule-collecting duct-Henle's loop-specific Flcn knockout (KO) mouse model (Flcn(flox/flox)/Ksp-Cre). This...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Mingsong, Si, Shuhui, Li, Yan, Schoen, Susan, Xiao, Guang-Qian, Li, Xueying, Teh, Bin Tean, Wu, Guan, Chen, Jindong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741728/
https://www.ncbi.nlm.nih.gov/pubmed/26418749
Descripción
Sumario:Deficiency of tumor suppressor FLCN leads to the activation of the mTOR signaling pathway in human BHD-associated renal cell carcinomas (RCC). We have previously developed a renal distal tubule-collecting duct-Henle's loop-specific Flcn knockout (KO) mouse model (Flcn(flox/flox)/Ksp-Cre). This mouse model can only survive for three weeks after birth due to the development of polycystic kidney and uremia. Whether these cystic solid hyperplasia changes seen in those KO mice are tumorigenic or malignant is unknown. In this study, we demonstrated that genetic disruption of Flcn in mouse kidney distal tubule cells could lead to tumorigenic transformation of these cells to develop allograft tumors with an aggressive histologic phenotype. Consistent with previous reports, we showed that the mTOR pathway plays an important role in the growth of these Flcn-deficient allograft and human UOK 257-1 xenograft tumors. We further demonstrated that the mTOR inhibitor, sirolimus, suppresses the tumor's growth, suggesting that mTOR inhibitors might be effective in control of FLCN-deficient RCC, especially in BHD renal tumorigenesis.