Cargando…

MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1

MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and β-MHC (β-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an in...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Xin, Jiang, Shiwen, Liu, Jian, Wang, Huangzhen, Zhang, Yiwen, Tang, Shou-Ching, Wang, Jichang, Du, Ning, Xu, Chongwen, Wang, Chenguang, Qin, Sida, Zhang, Jia, Liu, Dapeng, Zhang, Yunfeng, Li, Xiaojun, Wang, Jiansheng, Dong, Jun, Wang, Xin, Xu, Shaohua, Tao, Zhen, Xu, Fei, Zhou, Jie, Wang, Tao, Ren, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741741/
https://www.ncbi.nlm.nih.gov/pubmed/26460550
Descripción
Sumario:MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and β-MHC (β-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an inverse relationship between miR-208a and let-7a in breast cancer specimens, and found that SOX2, β-catenin and LIN28 are highly expressed in patients with advanced breast cancer opposed to lesser grades. Further, we isolated ALDH1+ CSCs from ZR75–1 and MDA-MB-231 (MM-231) breast cancer cell lines to test the role of miR-208a in breast CSCs (BrCSCs). Our studies showed that overexpression of miR-208a in these cells strongly promoted the proportion of ALDH1+ BrCSCs and continuously stimulated the self-renewal ability of BrCSCs. By using siRNAs of SOX2 and/or β-catenin, we found that miR-208a increased LIN28 through stimulation of both SOX2 and β-catenin. The knockdown of either SOX2 or β-catenin only partially attenuated the functions of miR-208a. Let-7a expression was strongly inhibited in miR-208a overexpressed cancer cells, which was achieved by miR-208a induction of LIN28, and the restoration of let-7a significantly inhibited the miR-208a induction of the number of ALDH1+ cells, inhibiting the propagations of BrCSCs. In let-7a overexpressed ZR75–1 and MM-231 cells, DICER1 activity was significantly inhibited with decreased miR-208a. Let-7a failed to decrease miR-208a expression in ZR75–1 and MM-231 cells with DICER1 knockdown. Our research revealed the mechanisms through which miR-208a functioned in breast cancer and BrCSCs, and identified the miR-208a-SOX2/β-catenin-LIN28-let-7a-DICER1 regulatory feedback loop in regulations of stem cells renewal.