Cargando…

Imaging of carbonic anhydrase IX with an (111)In-labeled dual-motif inhibitor

We developed a new scaffold for radionuclide-based imaging and therapy of clear cell renal cell carcinoma (ccRCC) targeting carbonic anhydrase IX (CAIX). Compound XYIMSR-01, a DOTA-conjugated, bivalent, low-molecular-weight ligand, has two moieties that target two separate sites on CAIX, imparting h...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xing, Minn, Il, Rowe, Steven P., Banerjee, Sangeeta Ray, Gorin, Michael A., Brummet, Mary, Lee, Hye Soo, Koo, Soo Min, Sysa-Shah, Polina, Mease, Ronnie C., Nimmagadda, Sridhar, Allaf, Mohamad E., Pomper, Martin G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741798/
https://www.ncbi.nlm.nih.gov/pubmed/26418876
Descripción
Sumario:We developed a new scaffold for radionuclide-based imaging and therapy of clear cell renal cell carcinoma (ccRCC) targeting carbonic anhydrase IX (CAIX). Compound XYIMSR-01, a DOTA-conjugated, bivalent, low-molecular-weight ligand, has two moieties that target two separate sites on CAIX, imparting high affinity. We synthesized [(111)In]XYIMSR-01 in 73.8–75.8% (n = 3) yield with specific radioactivities ranging from 118 – 1,021 GBq/μmol (3,200–27,600 Ci/mmol). Single photon emission computed tomography of [(111)In]XYIMSR-01 in immunocompromised mice bearing CAIX-expressing SK-RC-52 tumors revealed radiotracer uptake in tumor as early as 1 h post-injection. Biodistribution studies demonstrated 26% injected dose per gram of radioactivity within tumor at 1 h. Tumor-to-blood, muscle and kidney ratios were 178.1 ± 145.4, 68.4 ± 29.0 and 1.7 ± 1.2, respectively, at 24 h post-injection. Retention of radioactivity was exclusively observed in tumors by 48 h, the latest time point evaluated. The dual targeting strategy to engage CAIX enabled specific detection of ccRCC in this xenograft model, with pharmacokinetics surpassing those of previously described radionuclide-based probes against CAIX.