Cargando…
Heregulin, a new regulator of telomere length in human cells
The growth factor heregulin (HRG) promotes breast cancer (BC) tumorigenesis and metastasis and differentially modulates BC cell responses to DNA-damaging agents via its dual extracellular and nuclear localization. Given the central role of telomere dysfunction to drive carcinogenesis and to alter th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741836/ https://www.ncbi.nlm.nih.gov/pubmed/26318724 |
_version_ | 1782414081209139200 |
---|---|
author | Menendez, Javier A. Rubio, Miguel A. Campisi, Judith Lupu, Ruth |
author_facet | Menendez, Javier A. Rubio, Miguel A. Campisi, Judith Lupu, Ruth |
author_sort | Menendez, Javier A. |
collection | PubMed |
description | The growth factor heregulin (HRG) promotes breast cancer (BC) tumorigenesis and metastasis and differentially modulates BC cell responses to DNA-damaging agents via its dual extracellular and nuclear localization. Given the central role of telomere dysfunction to drive carcinogenesis and to alter the chemotherapeutic profile of transformed cells, we hypothesized that an unanticipated nuclear function of HRG might be to regulate telomere length. Engineered overexpression of the HRGβ2 isoform in non-aggressive, HRG-negative MCF-7 BC cells resulted in a significant shortening of telomeres (up to 1.3 kb) as measured by Southern blotting of telomere terminal restriction fragments. Conversely, antisense-mediated suppression of HRGβ2 in highly aggressive, HRG-overexpressing MDA-MB-231 and Hs578T cells increased telomere length up to 3.0 kb. HRGβ2 overexpression promoted a marked upregulation of telomere-binding protein 2 (TRF2) protein expression, whereas its knockdown profoundly decreased TRF2 expression. Double staining of endogenous HRGβ2 with telomere-specific peptide nucleic acid probe/fluorescence in situ hybridization (PNA/FISH) revealed the partial localization of HRG at the chromosome ends. Moreover, a predominantly nucleoplasmic staining pattern of endogenous HRGβ2 appeared to co-localize with TRF2 and, concomitantly with RAP1, a telomere regulator that specifically interacts with TRF2. Small interfering RNA-mediated knockdown of HRG decreased the expression of TRF2 and RAP1, decreased their presence at chromosome ends, and coincidentally resulted in the formation of longer telomeres. This study uncovers a new function for HRGβ2 in controlling telomere length, in part due to its ability to regulate and interact with the telomere-associated proteins TRF2 and RAP1. |
format | Online Article Text |
id | pubmed-4741836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-47418362016-03-23 Heregulin, a new regulator of telomere length in human cells Menendez, Javier A. Rubio, Miguel A. Campisi, Judith Lupu, Ruth Oncotarget Priority Research Paper The growth factor heregulin (HRG) promotes breast cancer (BC) tumorigenesis and metastasis and differentially modulates BC cell responses to DNA-damaging agents via its dual extracellular and nuclear localization. Given the central role of telomere dysfunction to drive carcinogenesis and to alter the chemotherapeutic profile of transformed cells, we hypothesized that an unanticipated nuclear function of HRG might be to regulate telomere length. Engineered overexpression of the HRGβ2 isoform in non-aggressive, HRG-negative MCF-7 BC cells resulted in a significant shortening of telomeres (up to 1.3 kb) as measured by Southern blotting of telomere terminal restriction fragments. Conversely, antisense-mediated suppression of HRGβ2 in highly aggressive, HRG-overexpressing MDA-MB-231 and Hs578T cells increased telomere length up to 3.0 kb. HRGβ2 overexpression promoted a marked upregulation of telomere-binding protein 2 (TRF2) protein expression, whereas its knockdown profoundly decreased TRF2 expression. Double staining of endogenous HRGβ2 with telomere-specific peptide nucleic acid probe/fluorescence in situ hybridization (PNA/FISH) revealed the partial localization of HRG at the chromosome ends. Moreover, a predominantly nucleoplasmic staining pattern of endogenous HRGβ2 appeared to co-localize with TRF2 and, concomitantly with RAP1, a telomere regulator that specifically interacts with TRF2. Small interfering RNA-mediated knockdown of HRG decreased the expression of TRF2 and RAP1, decreased their presence at chromosome ends, and coincidentally resulted in the formation of longer telomeres. This study uncovers a new function for HRGβ2 in controlling telomere length, in part due to its ability to regulate and interact with the telomere-associated proteins TRF2 and RAP1. Impact Journals LLC 2015-07-22 /pmc/articles/PMC4741836/ /pubmed/26318724 Text en Copyright: © 2015 Menendez et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Priority Research Paper Menendez, Javier A. Rubio, Miguel A. Campisi, Judith Lupu, Ruth Heregulin, a new regulator of telomere length in human cells |
title | Heregulin, a new regulator of telomere length in human cells |
title_full | Heregulin, a new regulator of telomere length in human cells |
title_fullStr | Heregulin, a new regulator of telomere length in human cells |
title_full_unstemmed | Heregulin, a new regulator of telomere length in human cells |
title_short | Heregulin, a new regulator of telomere length in human cells |
title_sort | heregulin, a new regulator of telomere length in human cells |
topic | Priority Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741836/ https://www.ncbi.nlm.nih.gov/pubmed/26318724 |
work_keys_str_mv | AT menendezjaviera heregulinanewregulatoroftelomerelengthinhumancells AT rubiomiguela heregulinanewregulatoroftelomerelengthinhumancells AT campisijudith heregulinanewregulatoroftelomerelengthinhumancells AT lupuruth heregulinanewregulatoroftelomerelengthinhumancells |