Cargando…

ERβ regulation of NF-κB activation in prostate cancer is mediated by HIF-1

We examined the regulation of NF-κB in prostate cancer by estrogen receptor β (ERβ) based on the inverse correlation between p65 and ERβ expression that exists in prostate carcinomas and reports that ERβ can inhibit NF-κB activation, although the mechanism is not known. We demonstrate that ERβ funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Mak, Paul, Li, Jiarong, Samanta, Sanjoy, Mercurio, Arthur M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741892/
https://www.ncbi.nlm.nih.gov/pubmed/26450901
Descripción
Sumario:We examined the regulation of NF-κB in prostate cancer by estrogen receptor β (ERβ) based on the inverse correlation between p65 and ERβ expression that exists in prostate carcinomas and reports that ERβ can inhibit NF-κB activation, although the mechanism is not known. We demonstrate that ERβ functions as a gate-keeper for NF-κB p65 signaling by repressing its expression and nuclear translocation. ERβ regulation of NF-κB signaling is mediated by HIF-1. Loss of ERβ or hypoxia stabilizes HIF-1α, which we found to be a direct driver of IKKβ transcription through a hypoxia response element present in the promoter of the IKKβ gene. The increase of IKKβ expression in ERβ-ablated cells correlates with an increase in phospho-IκBα and concomitant p65 nuclear translocation. An inverse correlation between the expression of ERβ and IKKβ/p65 was also observed in the prostates of ERβ knockout (BERKO) mice, Gleason grade 5 prostate tumors and analysis of prostate cancer databases. These findings provide a novel mechanism for how ERβ prevents NF-κB activation and raise the exciting possibility that loss of ERβ expression is linked to chronic inflammation in the prostate, which contributes to the development of high-grade prostate cancer.