Cargando…
SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways
Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide. The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, meta...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742184/ https://www.ncbi.nlm.nih.gov/pubmed/26415230 |
_version_ | 1782414159701344256 |
---|---|
author | Grassi, Elisa Stellaria Vezzoli, Valeria Negri, Irene Lábadi, Árpád Fugazzola, Laura Vitale, Giovanni Persani, Luca |
author_facet | Grassi, Elisa Stellaria Vezzoli, Valeria Negri, Irene Lábadi, Árpád Fugazzola, Laura Vitale, Giovanni Persani, Luca |
author_sort | Grassi, Elisa Stellaria |
collection | PubMed |
description | Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide. The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, metastatization and refractoriness even to the most recently developed therapies. In this study we show for the first time a significant hyperactivation of ROCK/HDAC6 pathway in thyroid cancer tissues, and its negative correlation with p53 DNA binding ability. We demonstrate that a small compound, SP600125 (SP), is able to induce cell death selectively in undifferentiated thyroid cancer cell lines by specifically acting on the pathogenic pathways of cancer development. In detail, SP acts on the ROCK/HDAC6 pathway involved in dedifferentiation and invasiveness of undifferentiated human cancers, by restoring its physiological activity level. As main consequence, cancer cell migration is inhibited and, at the same time, cell death is induced through the mitotic catastrophe. Moreover, SP exerts a preferential action on the mutant p53 by increasing its DNA binding ability. In TP53-mutant cells that survive mitotic catastrophe this process results in p21 induction and eventually lead to premature senescence. In conclusion, SP has been proved to be able to simultaneously block cell replication and migration, the two main processes involved in cancer development and dissemination, making it an ideal candidate for developing new drugs against anaplastic thyroid cancer. |
format | Online Article Text |
id | pubmed-4742184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-47421842016-04-04 SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways Grassi, Elisa Stellaria Vezzoli, Valeria Negri, Irene Lábadi, Árpád Fugazzola, Laura Vitale, Giovanni Persani, Luca Oncotarget Research Paper Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide. The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, metastatization and refractoriness even to the most recently developed therapies. In this study we show for the first time a significant hyperactivation of ROCK/HDAC6 pathway in thyroid cancer tissues, and its negative correlation with p53 DNA binding ability. We demonstrate that a small compound, SP600125 (SP), is able to induce cell death selectively in undifferentiated thyroid cancer cell lines by specifically acting on the pathogenic pathways of cancer development. In detail, SP acts on the ROCK/HDAC6 pathway involved in dedifferentiation and invasiveness of undifferentiated human cancers, by restoring its physiological activity level. As main consequence, cancer cell migration is inhibited and, at the same time, cell death is induced through the mitotic catastrophe. Moreover, SP exerts a preferential action on the mutant p53 by increasing its DNA binding ability. In TP53-mutant cells that survive mitotic catastrophe this process results in p21 induction and eventually lead to premature senescence. In conclusion, SP has been proved to be able to simultaneously block cell replication and migration, the two main processes involved in cancer development and dissemination, making it an ideal candidate for developing new drugs against anaplastic thyroid cancer. Impact Journals LLC 2015-09-22 /pmc/articles/PMC4742184/ /pubmed/26415230 Text en Copyright: © 2015 Grassi et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Grassi, Elisa Stellaria Vezzoli, Valeria Negri, Irene Lábadi, Árpád Fugazzola, Laura Vitale, Giovanni Persani, Luca SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways |
title | SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways |
title_full | SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways |
title_fullStr | SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways |
title_full_unstemmed | SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways |
title_short | SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways |
title_sort | sp600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on rock and p53 pathways |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742184/ https://www.ncbi.nlm.nih.gov/pubmed/26415230 |
work_keys_str_mv | AT grassielisastellaria sp600125hasaremarkableanticancerpotentialagainstundifferentiatedthyroidcancerthroughselectiveactiononrockandp53pathways AT vezzolivaleria sp600125hasaremarkableanticancerpotentialagainstundifferentiatedthyroidcancerthroughselectiveactiononrockandp53pathways AT negriirene sp600125hasaremarkableanticancerpotentialagainstundifferentiatedthyroidcancerthroughselectiveactiononrockandp53pathways AT labadiarpad sp600125hasaremarkableanticancerpotentialagainstundifferentiatedthyroidcancerthroughselectiveactiononrockandp53pathways AT fugazzolalaura sp600125hasaremarkableanticancerpotentialagainstundifferentiatedthyroidcancerthroughselectiveactiononrockandp53pathways AT vitalegiovanni sp600125hasaremarkableanticancerpotentialagainstundifferentiatedthyroidcancerthroughselectiveactiononrockandp53pathways AT persaniluca sp600125hasaremarkableanticancerpotentialagainstundifferentiatedthyroidcancerthroughselectiveactiononrockandp53pathways |