Cargando…

The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation

PURPOSE: Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents...

Descripción completa

Detalles Bibliográficos
Autores principales: Scheffer, Hester J., Vogel, Jantien A., van den Bos, Willemien, Neal, Robert E., van Lienden, Krijn P., Besselink, Marc G. H., van Gemert, Martin J. C., van der Geld, Cees W. M., Meijerink, Martijn R., Klaessens, John H., Verdaasdonk, Rudolf M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742246/
https://www.ncbi.nlm.nih.gov/pubmed/26844550
http://dx.doi.org/10.1371/journal.pone.0148457
_version_ 1782414173692493824
author Scheffer, Hester J.
Vogel, Jantien A.
van den Bos, Willemien
Neal, Robert E.
van Lienden, Krijn P.
Besselink, Marc G. H.
van Gemert, Martin J. C.
van der Geld, Cees W. M.
Meijerink, Martijn R.
Klaessens, John H.
Verdaasdonk, Rudolf M.
author_facet Scheffer, Hester J.
Vogel, Jantien A.
van den Bos, Willemien
Neal, Robert E.
van Lienden, Krijn P.
Besselink, Marc G. H.
van Gemert, Martin J. C.
van der Geld, Cees W. M.
Meijerink, Martijn R.
Klaessens, John H.
Verdaasdonk, Rudolf M.
author_sort Scheffer, Hester J.
collection PubMed
description PURPOSE: Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. METHODS: IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15–35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000–1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. RESULTS: In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. CONCLUSION: IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective.
format Online
Article
Text
id pubmed-4742246
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47422462016-02-11 The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation Scheffer, Hester J. Vogel, Jantien A. van den Bos, Willemien Neal, Robert E. van Lienden, Krijn P. Besselink, Marc G. H. van Gemert, Martin J. C. van der Geld, Cees W. M. Meijerink, Martijn R. Klaessens, John H. Verdaasdonk, Rudolf M. PLoS One Research Article PURPOSE: Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. METHODS: IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15–35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000–1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. RESULTS: In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. CONCLUSION: IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective. Public Library of Science 2016-02-04 /pmc/articles/PMC4742246/ /pubmed/26844550 http://dx.doi.org/10.1371/journal.pone.0148457 Text en © 2016 Scheffer et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Scheffer, Hester J.
Vogel, Jantien A.
van den Bos, Willemien
Neal, Robert E.
van Lienden, Krijn P.
Besselink, Marc G. H.
van Gemert, Martin J. C.
van der Geld, Cees W. M.
Meijerink, Martijn R.
Klaessens, John H.
Verdaasdonk, Rudolf M.
The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation
title The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation
title_full The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation
title_fullStr The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation
title_full_unstemmed The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation
title_short The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation
title_sort influence of a metal stent on the distribution of thermal energy during irreversible electroporation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742246/
https://www.ncbi.nlm.nih.gov/pubmed/26844550
http://dx.doi.org/10.1371/journal.pone.0148457
work_keys_str_mv AT schefferhesterj theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vogeljantiena theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vandenboswillemien theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT nealroberte theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vanliendenkrijnp theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT besselinkmarcgh theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vangemertmartinjc theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vandergeldceeswm theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT meijerinkmartijnr theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT klaessensjohnh theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT verdaasdonkrudolfm theinfluenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT schefferhesterj influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vogeljantiena influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vandenboswillemien influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT nealroberte influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vanliendenkrijnp influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT besselinkmarcgh influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vangemertmartinjc influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT vandergeldceeswm influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT meijerinkmartijnr influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT klaessensjohnh influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation
AT verdaasdonkrudolfm influenceofametalstentonthedistributionofthermalenergyduringirreversibleelectroporation