Cargando…

Effect of Nitric Oxide on the Expression of Matrix Metalloproteinase and Its Association with Migration of Cultured Trabecular Meshwork Cells

PURPOSE: To determine the effect of exogenous nitric oxide (NO) on the migration of trabecular meshwork (TM) cells and its association with expression of matrix metalloproteinases (MMPs). METHODS: Primary human TM cells treated with 1 or 10 µM S-nitroso-N-acetyl-penicillamine (SNAP) and examined for...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, Jae Woo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Ophthalmological Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742648/
https://www.ncbi.nlm.nih.gov/pubmed/26865806
http://dx.doi.org/10.3341/kjo.2016.30.1.66
Descripción
Sumario:PURPOSE: To determine the effect of exogenous nitric oxide (NO) on the migration of trabecular meshwork (TM) cells and its association with expression of matrix metalloproteinases (MMPs). METHODS: Primary human TM cells treated with 1 or 10 µM S-nitroso-N-acetyl-penicillamine (SNAP) and examined for changes in adherence. TM cells were seeded onto transwell culture inserts, and changes in their migratory activity were quantified. Reverse transcription polymerase chain reaction was performed to determine the relative changes in mRNA expression of MMPs and tissue inhibitor of metalloproteinases (TIMPs). RESULTS: Treatment with SNAP did not significantly suppress TM cell adhesion or migration (p > 0.05). Treatment of TM cells with 10 µM SNAP decreased expression of MMP-2 and increased expression of membrane type MMP-1 and TIMP-2. Treatment with interleukin-1α triggered MMP-3 expression but did not exert significant effects on MMP-3 activation in response to SNAP. CONCLUSIONS: These data suggest that NO revealed no significant effect on the migration of TM cells because NO decreased MMP-2 and increased TIMP-2 expression. Although expression of certain MMPs and TIMPs change in response to NO donors, NO may modulate trabecular outflow by changing the cellular production of extracellular matrix without having a significant effect on the migration of TM cells.