Cargando…

Ultrasensitive Detection of Bacteria by Targeting Abundant Transcripts

Molecular detection assays are increasingly becoming routine diagnostic techniques for bacterial infection; however, their sensitivities are restricted by the low concentrations of bacteria in clinical samples. Here, we report a new paradigm for ultrasensitive detection of bacteria. The principle of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xinhui, Li, Xinran, Liu, Shiwei, Ren, Hang, Yang, Mingjuan, Ke, Yuehua, Huang, Liuyu, Liu, Chao, Liu, Bo, Chen, Zeliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742959/
https://www.ncbi.nlm.nih.gov/pubmed/26848029
http://dx.doi.org/10.1038/srep20393
Descripción
Sumario:Molecular detection assays are increasingly becoming routine diagnostic techniques for bacterial infection; however, their sensitivities are restricted by the low concentrations of bacteria in clinical samples. Here, we report a new paradigm for ultrasensitive detection of bacteria. The principle of this approach is that by choosing highly transcribed genes as signature sequences and detecting both DNA and its RNA transcripts, assay sensitivity can be greatly improved. First, signature genes with abundant transcripts were screened by RNA-Seq. We confirmed that RT-PCR efficiently amplifies both DNA and RNA, while PCR amplifies only DNA. Unexpectedly, we found that the RNA extraction efficiency is relatively low, while simplified denaturation was more appropriate for transcript detection. For highly transcribed genes, RT-PCR consistently generated lower cycle threshold (Ct) values than those of PCR. The sensitivity of RT-PCR targeting abundant transcripts could detect quantities as low as one bacterium, which was not possible using PCR. Amplification of different genes among several other common bacteria also confirmed that transcript detection by RT-PCR is more sensitive than is DNA detection by PCR. Therefore, abundant transcript detection represents a universal strategy for ultrasensitive detection of bacteria.