Cargando…
CausalTrail: Testing hypothesis using causal Bayesian networks
Summary Causal Bayesian Networks are a special class of Bayesian networks in which the hierarchy directly encodes the causal relationships between the variables. This allows to compute the effect of interventions, which are external changes to the system, caused by e.g. gene knockouts or an administ...
Autores principales: | Stöckel, Daniel, Schmidt, Florian, Trampert, Patrick, Lenhof, Hans-Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743151/ https://www.ncbi.nlm.nih.gov/pubmed/26913195 http://dx.doi.org/10.12688/f1000research.7647.1 |
Ejemplares similares
-
CausalBuilder: bringing the MI2CAST causal interaction annotation standard to the curator
por: Touré, Vasundra, et al.
Publicado: (2021) -
GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments
por: Keller, Andreas, et al.
Publicado: (2008) -
Bayesian alternatives to null hypothesis significance testing in biomedical research: a non-technical introduction to Bayesian inference with JASP
por: Kelter, Riko
Publicado: (2020) -
Trust and health: testing the reverse causality hypothesis
por: Giordano, Giuseppe Nicola, et al.
Publicado: (2016) -
GeneTrail: A Framework for the Analysis of High-Throughput Profiles
por: Gerstner, Nico, et al.
Publicado: (2021)