Cargando…
Broadwick: a framework for computational epidemiology
BACKGROUND: Modelling disease outbreaks often involves integrating the wealth of data that are gathered during modern outbreaks into complex mathematical or computational models of transmission. Incorporating these data into simple compartmental epidemiological models is often challenging, requiring...
Autores principales: | O’Hare, Anthony, Lycett, Samantha J., Doherty, Thomas, M. Salvador, Liliana C., Kao, Rowland R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743398/ https://www.ncbi.nlm.nih.gov/pubmed/26846686 http://dx.doi.org/10.1186/s12859-016-0903-2 |
Ejemplares similares
-
Supersize me: how whole-genome sequencing and big data are transforming epidemiology
por: Kao, Rowland R., et al.
Publicado: (2014) -
CASE: a framework for computer supported outbreak detection
por: Cakici, Baki, et al.
Publicado: (2010) -
Automated analysis of phylogenetic clusters
por: Ragonnet-Cronin, Manon, et al.
Publicado: (2013) -
circRNAprofiler: an R-based computational framework for the downstream analysis of circular RNAs
por: Aufiero, Simona, et al.
Publicado: (2020) -
Biotite: a unifying open source computational biology framework in Python
por: Kunzmann, Patrick, et al.
Publicado: (2018)