Cargando…
funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types
Motivation: DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Meth...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743629/ https://www.ncbi.nlm.nih.gov/pubmed/26500152 http://dx.doi.org/10.1093/bioinformatics/btv615 |
_version_ | 1782414385007820800 |
---|---|
author | Oros Klein, Kathleen Grinek, Stepan Bernatsky, Sasha Bouchard, Luigi Ciampi, Antonio Colmegna, Ines Fortin, Jean-Philippe Gao, Long Hivert, Marie-France Hudson, Marie Kobor, Michael S. Labbe, Aurelie MacIsaac, Julia L. Meaney, Michael J. Morin, Alexander M. O’Donnell, Kieran J. Pastinen, Tomi Van Ijzendoorn, Marinus H. Voisin, Gregory Greenwood, Celia M.T. |
author_facet | Oros Klein, Kathleen Grinek, Stepan Bernatsky, Sasha Bouchard, Luigi Ciampi, Antonio Colmegna, Ines Fortin, Jean-Philippe Gao, Long Hivert, Marie-France Hudson, Marie Kobor, Michael S. Labbe, Aurelie MacIsaac, Julia L. Meaney, Michael J. Morin, Alexander M. O’Donnell, Kieran J. Pastinen, Tomi Van Ijzendoorn, Marinus H. Voisin, Gregory Greenwood, Celia M.T. |
author_sort | Oros Klein, Kathleen |
collection | PubMed |
description | Motivation: DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Methylation450 BeadChip (Illumina 450 K) built on the concepts in the recently published funNorm method, and introducing cell-type or tissue-type flexibility. Results: funtooNorm is relevant for data sets containing samples from two or more cell or tissue types. A visual display of cross-validated errors informs the choice of the optimal number of components in the normalization. Benefits of cell (tissue)-specific normalization are demonstrated in three data sets. Improvement can be substantial; it is strikingly better on chromosome X, where methylation patterns have unique inter-tissue variability. Availability and Implementation: An R package is available at https://github.com/GreenwoodLab/funtooNorm, and has been submitted to Bioconductor at http://bioconductor.org. Contact: celia.greenwood@mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-4743629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47436292016-02-08 funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types Oros Klein, Kathleen Grinek, Stepan Bernatsky, Sasha Bouchard, Luigi Ciampi, Antonio Colmegna, Ines Fortin, Jean-Philippe Gao, Long Hivert, Marie-France Hudson, Marie Kobor, Michael S. Labbe, Aurelie MacIsaac, Julia L. Meaney, Michael J. Morin, Alexander M. O’Donnell, Kieran J. Pastinen, Tomi Van Ijzendoorn, Marinus H. Voisin, Gregory Greenwood, Celia M.T. Bioinformatics Applications Notes Motivation: DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Methylation450 BeadChip (Illumina 450 K) built on the concepts in the recently published funNorm method, and introducing cell-type or tissue-type flexibility. Results: funtooNorm is relevant for data sets containing samples from two or more cell or tissue types. A visual display of cross-validated errors informs the choice of the optimal number of components in the normalization. Benefits of cell (tissue)-specific normalization are demonstrated in three data sets. Improvement can be substantial; it is strikingly better on chromosome X, where methylation patterns have unique inter-tissue variability. Availability and Implementation: An R package is available at https://github.com/GreenwoodLab/funtooNorm, and has been submitted to Bioconductor at http://bioconductor.org. Contact: celia.greenwood@mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2016-02-15 2015-10-24 /pmc/articles/PMC4743629/ /pubmed/26500152 http://dx.doi.org/10.1093/bioinformatics/btv615 Text en © The Author 2015. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Applications Notes Oros Klein, Kathleen Grinek, Stepan Bernatsky, Sasha Bouchard, Luigi Ciampi, Antonio Colmegna, Ines Fortin, Jean-Philippe Gao, Long Hivert, Marie-France Hudson, Marie Kobor, Michael S. Labbe, Aurelie MacIsaac, Julia L. Meaney, Michael J. Morin, Alexander M. O’Donnell, Kieran J. Pastinen, Tomi Van Ijzendoorn, Marinus H. Voisin, Gregory Greenwood, Celia M.T. funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types |
title | funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types |
title_full | funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types |
title_fullStr | funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types |
title_full_unstemmed | funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types |
title_short | funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types |
title_sort | funtoonorm: an r package for normalization of dna methylation data when there are multiple cell or tissue types |
topic | Applications Notes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743629/ https://www.ncbi.nlm.nih.gov/pubmed/26500152 http://dx.doi.org/10.1093/bioinformatics/btv615 |
work_keys_str_mv | AT oroskleinkathleen funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT grinekstepan funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT bernatskysasha funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT bouchardluigi funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT ciampiantonio funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT colmegnaines funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT fortinjeanphilippe funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT gaolong funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT hivertmariefrance funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT hudsonmarie funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT kobormichaels funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT labbeaurelie funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT macisaacjulial funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT meaneymichaelj funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT morinalexanderm funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT odonnellkieranj funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT pastinentomi funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT vanijzendoornmarinush funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT voisingregory funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes AT greenwoodceliamt funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes |