Cargando…

funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types

Motivation: DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Oros Klein, Kathleen, Grinek, Stepan, Bernatsky, Sasha, Bouchard, Luigi, Ciampi, Antonio, Colmegna, Ines, Fortin, Jean-Philippe, Gao, Long, Hivert, Marie-France, Hudson, Marie, Kobor, Michael S., Labbe, Aurelie, MacIsaac, Julia L., Meaney, Michael J., Morin, Alexander M., O’Donnell, Kieran J., Pastinen, Tomi, Van Ijzendoorn, Marinus H., Voisin, Gregory, Greenwood, Celia M.T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743629/
https://www.ncbi.nlm.nih.gov/pubmed/26500152
http://dx.doi.org/10.1093/bioinformatics/btv615
_version_ 1782414385007820800
author Oros Klein, Kathleen
Grinek, Stepan
Bernatsky, Sasha
Bouchard, Luigi
Ciampi, Antonio
Colmegna, Ines
Fortin, Jean-Philippe
Gao, Long
Hivert, Marie-France
Hudson, Marie
Kobor, Michael S.
Labbe, Aurelie
MacIsaac, Julia L.
Meaney, Michael J.
Morin, Alexander M.
O’Donnell, Kieran J.
Pastinen, Tomi
Van Ijzendoorn, Marinus H.
Voisin, Gregory
Greenwood, Celia M.T.
author_facet Oros Klein, Kathleen
Grinek, Stepan
Bernatsky, Sasha
Bouchard, Luigi
Ciampi, Antonio
Colmegna, Ines
Fortin, Jean-Philippe
Gao, Long
Hivert, Marie-France
Hudson, Marie
Kobor, Michael S.
Labbe, Aurelie
MacIsaac, Julia L.
Meaney, Michael J.
Morin, Alexander M.
O’Donnell, Kieran J.
Pastinen, Tomi
Van Ijzendoorn, Marinus H.
Voisin, Gregory
Greenwood, Celia M.T.
author_sort Oros Klein, Kathleen
collection PubMed
description Motivation: DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Methylation450 BeadChip (Illumina 450 K) built on the concepts in the recently published funNorm method, and introducing cell-type or tissue-type flexibility. Results: funtooNorm is relevant for data sets containing samples from two or more cell or tissue types. A visual display of cross-validated errors informs the choice of the optimal number of components in the normalization. Benefits of cell (tissue)-specific normalization are demonstrated in three data sets. Improvement can be substantial; it is strikingly better on chromosome X, where methylation patterns have unique inter-tissue variability. Availability and Implementation: An R package is available at https://github.com/GreenwoodLab/funtooNorm, and has been submitted to Bioconductor at http://bioconductor.org. Contact: celia.greenwood@mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-4743629
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-47436292016-02-08 funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types Oros Klein, Kathleen Grinek, Stepan Bernatsky, Sasha Bouchard, Luigi Ciampi, Antonio Colmegna, Ines Fortin, Jean-Philippe Gao, Long Hivert, Marie-France Hudson, Marie Kobor, Michael S. Labbe, Aurelie MacIsaac, Julia L. Meaney, Michael J. Morin, Alexander M. O’Donnell, Kieran J. Pastinen, Tomi Van Ijzendoorn, Marinus H. Voisin, Gregory Greenwood, Celia M.T. Bioinformatics Applications Notes Motivation: DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Methylation450 BeadChip (Illumina 450 K) built on the concepts in the recently published funNorm method, and introducing cell-type or tissue-type flexibility. Results: funtooNorm is relevant for data sets containing samples from two or more cell or tissue types. A visual display of cross-validated errors informs the choice of the optimal number of components in the normalization. Benefits of cell (tissue)-specific normalization are demonstrated in three data sets. Improvement can be substantial; it is strikingly better on chromosome X, where methylation patterns have unique inter-tissue variability. Availability and Implementation: An R package is available at https://github.com/GreenwoodLab/funtooNorm, and has been submitted to Bioconductor at http://bioconductor.org. Contact: celia.greenwood@mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2016-02-15 2015-10-24 /pmc/articles/PMC4743629/ /pubmed/26500152 http://dx.doi.org/10.1093/bioinformatics/btv615 Text en © The Author 2015. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Applications Notes
Oros Klein, Kathleen
Grinek, Stepan
Bernatsky, Sasha
Bouchard, Luigi
Ciampi, Antonio
Colmegna, Ines
Fortin, Jean-Philippe
Gao, Long
Hivert, Marie-France
Hudson, Marie
Kobor, Michael S.
Labbe, Aurelie
MacIsaac, Julia L.
Meaney, Michael J.
Morin, Alexander M.
O’Donnell, Kieran J.
Pastinen, Tomi
Van Ijzendoorn, Marinus H.
Voisin, Gregory
Greenwood, Celia M.T.
funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types
title funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types
title_full funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types
title_fullStr funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types
title_full_unstemmed funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types
title_short funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types
title_sort funtoonorm: an r package for normalization of dna methylation data when there are multiple cell or tissue types
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743629/
https://www.ncbi.nlm.nih.gov/pubmed/26500152
http://dx.doi.org/10.1093/bioinformatics/btv615
work_keys_str_mv AT oroskleinkathleen funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT grinekstepan funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT bernatskysasha funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT bouchardluigi funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT ciampiantonio funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT colmegnaines funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT fortinjeanphilippe funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT gaolong funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT hivertmariefrance funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT hudsonmarie funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT kobormichaels funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT labbeaurelie funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT macisaacjulial funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT meaneymichaelj funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT morinalexanderm funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT odonnellkieranj funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT pastinentomi funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT vanijzendoornmarinush funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT voisingregory funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes
AT greenwoodceliamt funtoonormanrpackagefornormalizationofdnamethylationdatawhentherearemultiplecellortissuetypes