Cargando…
An Adaptive Ridge Procedure for L(0) Regularization
Penalized selection criteria like AIC or BIC are among the most popular methods for variable selection. Their theoretical properties have been studied intensively and are well understood, but making use of them in case of high-dimensional data is difficult due to the non-convex optimization problem...
Autores principales: | Frommlet, Florian, Nuel, Grégory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743917/ https://www.ncbi.nlm.nih.gov/pubmed/26849123 http://dx.doi.org/10.1371/journal.pone.0148620 |
Ejemplares similares
-
Adaptive Ridge Regression for Rare Variant Detection
por: Zhan, Haimao, et al.
Publicado: (2012) -
On the Complementarity of Sparse L0 and CEL0 Regularized Loss Landscapes for DOA Estimation
por: Delmer, Alice, et al.
Publicado: (2021) -
Efficient Regularized Regression with L
(0) Penalty for Variable Selection and Network Construction
por: Liu, Zhenqiu, et al.
Publicado: (2016) -
Blind Image Inpainting with Mixture Noise Using ℓ(0) and Total Regularization
por: Xu, Xiaowei, et al.
Publicado: (2022) -
Ridge Preservation Procedures after Tooth Extractions: A Systematic Review
por: Balli, Gabriella, et al.
Publicado: (2018)