Cargando…
Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression
BACKGROUND: Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to i...
Autores principales: | Dipnall, Joanna F., Pasco, Julie A., Berk, Michael, Williams, Lana J., Dodd, Seetal, Jacka, Felice N., Meyer, Denny |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744063/ https://www.ncbi.nlm.nih.gov/pubmed/26848571 http://dx.doi.org/10.1371/journal.pone.0148195 |
Ejemplares similares
-
Into the Bowels of Depression: Unravelling Medical Symptoms Associated with Depression by Applying Machine-Learning Techniques to a Community Based Population Sample
por: Dipnall, Joanna F., et al.
Publicado: (2016) -
Pop, heavy metal and the blues: secondary analysis of persistent organic pollutants (POP), heavy metals and depressive symptoms in the NHANES National Epidemiological Survey
por: Berk, Michael, et al.
Publicado: (2014) -
Depression following fracture in women: a study of age-matched cohorts
por: Williams, Lana J, et al.
Publicado: (2014) -
The association between diet quality, dietary patterns and depression in adults: a systematic review
por: Quirk, Shae E, et al.
Publicado: (2013) -
Prevalence of mood and anxiety disorder in self reported irritable bowel syndrome (IBS). An epidemiological population based study of women
por: Mykletun, Arnstein, et al.
Publicado: (2010)