Cargando…
Data in support of Gallium (Ga(3+)) antibacterial activities to counteract E. coli and S. epidermidis biofilm formation onto pro-osteointegrative titanium surfaces
This paper contains original data supporting the antibacterial activities of Gallium (Ga(3+))-doped pro-osteointegrative titanium alloys, obtained via Anodic Spark Deposition (ASD), as described in “The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumanni...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744237/ https://www.ncbi.nlm.nih.gov/pubmed/26909385 http://dx.doi.org/10.1016/j.dib.2016.01.024 |
Sumario: | This paper contains original data supporting the antibacterial activities of Gallium (Ga(3+))-doped pro-osteointegrative titanium alloys, obtained via Anodic Spark Deposition (ASD), as described in “The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii” (Cochis et al. 2016) [1]. In this article we included an indirect cytocompatibility evaluation towards Saos2 human osteoblasts and extended the microbial evaluation of the Ga(3+) enriched titanium surfaces against the biofilm former Escherichia coli and Staphylococcus epidermidis strains. Cell viability was assayed by the Alamar Blue test, while bacterial viability was evaluated by the metabolic colorimetric 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Finally biofilm morphology was analyzed by Scanning Electron Microscopy (SEM). Data regarding Ga(3+) activity were compared to Silver. |
---|