Cargando…

Lightweight physiologic sensor performance during pre-hospital care delivered by ambulance clinicians

The aim of this study was to explore the impact of motion generated by ambulance patient management on the performance of two lightweight physiologic sensors. Two physiologic sensors were applied to pre-hospital patients. The first was the Contec Medical Systems CMS50FW finger pulse oximeter, monito...

Descripción completa

Detalles Bibliográficos
Autores principales: Mort, Alasdair J., Fitzpatrick, David, Wilson, Philip M. J., Mellish, Chris, Schneider, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744257/
https://www.ncbi.nlm.nih.gov/pubmed/25804608
http://dx.doi.org/10.1007/s10877-015-9673-z
Descripción
Sumario:The aim of this study was to explore the impact of motion generated by ambulance patient management on the performance of two lightweight physiologic sensors. Two physiologic sensors were applied to pre-hospital patients. The first was the Contec Medical Systems CMS50FW finger pulse oximeter, monitoring heart rate (HR) and blood oxygen saturation (SpO2). The second was the RESpeck respiratory rate (RR) sensor, which was wireless-enabled with a Bluetooth(®) Low Energy protocol. Sensor data were recorded from 16 pre-hospital patients, who were monitored for 21.2 ± 9.8 min, on average. Some form of error was identified on almost every HR and SpO(2) trace. However, the mean proportion of each trace exhibiting error was <10 % (range <1–50 % for individual patients). There appeared to be no overt impact of the gross motion associated with road ambulance transit on the incidence of HR or SpO(2) error. The RESpeck RR sensor delivered an average of 4.2 (±2.2) validated breaths per minute, but did not produce any validated breaths during the gross motion of ambulance transit as its pre-defined motion threshold was exceeded. However, this was many more data points than could be achieved using traditional manual assessment of RR. Error was identified on a majority of pre-hospital physiologic signals, which emphasised the need to ensure consistent sensor attachment in this unstable and unpredictable environment, and in developing intelligent methods of screening out such error.