Cargando…
Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models
BACKGROUND: Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematicall...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744429/ https://www.ncbi.nlm.nih.gov/pubmed/26850268 http://dx.doi.org/10.1186/s12940-016-0112-5 |
_version_ | 1782414489932529664 |
---|---|
author | Li, Lianfa Laurent, Olivier Wu, Jun |
author_facet | Li, Lianfa Laurent, Olivier Wu, Jun |
author_sort | Li, Lianfa |
collection | PubMed |
description | BACKGROUND: Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution’s effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. METHODS: We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO(2)) and nitrogen oxides (NO(x)) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. RESULTS: Higher air pollution exposure was associated with lower term birth weight (average posterior effects: −14.7 (95 % CI: −19.8, −9.7) g per 10 ppb increment in NO(2) and −6.9 (95 % CI: −12.9, −0.9) g per 10 ppb increment in NO(x)). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with lower vulnerability. CONCLUSIONS: Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial variability of such association. This study contributes new findings about non-linear influences of socio-demographic factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12940-016-0112-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4744429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47444292016-02-07 Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models Li, Lianfa Laurent, Olivier Wu, Jun Environ Health Research BACKGROUND: Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution’s effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. METHODS: We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO(2)) and nitrogen oxides (NO(x)) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. RESULTS: Higher air pollution exposure was associated with lower term birth weight (average posterior effects: −14.7 (95 % CI: −19.8, −9.7) g per 10 ppb increment in NO(2) and −6.9 (95 % CI: −12.9, −0.9) g per 10 ppb increment in NO(x)). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with lower vulnerability. CONCLUSIONS: Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial variability of such association. This study contributes new findings about non-linear influences of socio-demographic factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12940-016-0112-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-02-05 /pmc/articles/PMC4744429/ /pubmed/26850268 http://dx.doi.org/10.1186/s12940-016-0112-5 Text en © Li et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Li, Lianfa Laurent, Olivier Wu, Jun Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models |
title | Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models |
title_full | Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models |
title_fullStr | Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models |
title_full_unstemmed | Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models |
title_short | Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models |
title_sort | spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using bayesian hierarchical models |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744429/ https://www.ncbi.nlm.nih.gov/pubmed/26850268 http://dx.doi.org/10.1186/s12940-016-0112-5 |
work_keys_str_mv | AT lilianfa spatialvariabilityoftheeffectofairpollutionontermbirthweightevaluatinginfluentialfactorsusingbayesianhierarchicalmodels AT laurentolivier spatialvariabilityoftheeffectofairpollutionontermbirthweightevaluatinginfluentialfactorsusingbayesianhierarchicalmodels AT wujun spatialvariabilityoftheeffectofairpollutionontermbirthweightevaluatinginfluentialfactorsusingbayesianhierarchicalmodels |