Cargando…
Multiplatform characterization of dynamic changes in breast milk during lactation
The multicomponent analysis of human breast milk (BM) by metabolic profiling is a new area of study applied to determining milk composition, and is capable of associating BM composition with maternal characteristics, and subsequent infant health outcomes. A multiplatform approach combining HPLC‐MS a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744768/ https://www.ncbi.nlm.nih.gov/pubmed/25959062 http://dx.doi.org/10.1002/elps.201500011 |
_version_ | 1782414528161513472 |
---|---|
author | Andreas, Nicholas J. Hyde, Matthew J. Gomez‐Romero, Maria Lopez‐Gonzalvez, Maria Angeles Villaseñor, Alma Wijeyesekera, Anisha Barbas, Coral Modi, Neena Holmes, Elaine Garcia‐Perez, Isabel |
author_facet | Andreas, Nicholas J. Hyde, Matthew J. Gomez‐Romero, Maria Lopez‐Gonzalvez, Maria Angeles Villaseñor, Alma Wijeyesekera, Anisha Barbas, Coral Modi, Neena Holmes, Elaine Garcia‐Perez, Isabel |
author_sort | Andreas, Nicholas J. |
collection | PubMed |
description | The multicomponent analysis of human breast milk (BM) by metabolic profiling is a new area of study applied to determining milk composition, and is capable of associating BM composition with maternal characteristics, and subsequent infant health outcomes. A multiplatform approach combining HPLC‐MS and ultra‐performance LC‐MS, GC‐MS, CE‐MS, and (1)H NMR spectroscopy was used to comprehensively characterize metabolic profiles from seventy BM samples. A total of 710 metabolites spanning multiple molecular classes were defined. The utility of the individual and combined analytical platforms was explored in relation to numbers of metabolites identified, as well as the reproducibility of the methods. The greatest number of metabolites was identified by the single phase HPLC‐MS method, while CE‐MS uniquely profiled amino acids in detail and NMR was the most reproducible, whereas GC‐MS targeted volatile compounds and short chain fatty acids. Dynamic changes in BM composition were characterized over the first 3 months of lactation. Metabolites identified as altering in abundance over lactation included fucose, di‐ and triacylglycerols, and short chain fatty acids, known to be important for infant immunological, neurological, and gastrointestinal development, as well as being an important source of energy. This extensive metabolic coverage of the dynamic BM metabolome provides a baseline for investigating the impact of maternal characteristics, as well as establishing the impact of environmental and dietary factors on the composition of BM, with a focus on the downstream health consequences this may have for infants. |
format | Online Article Text |
id | pubmed-4744768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-47447682016-02-18 Multiplatform characterization of dynamic changes in breast milk during lactation Andreas, Nicholas J. Hyde, Matthew J. Gomez‐Romero, Maria Lopez‐Gonzalvez, Maria Angeles Villaseñor, Alma Wijeyesekera, Anisha Barbas, Coral Modi, Neena Holmes, Elaine Garcia‐Perez, Isabel Electrophoresis Part III: Applications The multicomponent analysis of human breast milk (BM) by metabolic profiling is a new area of study applied to determining milk composition, and is capable of associating BM composition with maternal characteristics, and subsequent infant health outcomes. A multiplatform approach combining HPLC‐MS and ultra‐performance LC‐MS, GC‐MS, CE‐MS, and (1)H NMR spectroscopy was used to comprehensively characterize metabolic profiles from seventy BM samples. A total of 710 metabolites spanning multiple molecular classes were defined. The utility of the individual and combined analytical platforms was explored in relation to numbers of metabolites identified, as well as the reproducibility of the methods. The greatest number of metabolites was identified by the single phase HPLC‐MS method, while CE‐MS uniquely profiled amino acids in detail and NMR was the most reproducible, whereas GC‐MS targeted volatile compounds and short chain fatty acids. Dynamic changes in BM composition were characterized over the first 3 months of lactation. Metabolites identified as altering in abundance over lactation included fucose, di‐ and triacylglycerols, and short chain fatty acids, known to be important for infant immunological, neurological, and gastrointestinal development, as well as being an important source of energy. This extensive metabolic coverage of the dynamic BM metabolome provides a baseline for investigating the impact of maternal characteristics, as well as establishing the impact of environmental and dietary factors on the composition of BM, with a focus on the downstream health consequences this may have for infants. John Wiley and Sons Inc. 2015-06-25 2015-09 /pmc/articles/PMC4744768/ /pubmed/25959062 http://dx.doi.org/10.1002/elps.201500011 Text en © 2015 The Authors. ELECTROPHORESIS Published by WILEY‐VCH Verlag GmbH & Co. KGaA This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Part III: Applications Andreas, Nicholas J. Hyde, Matthew J. Gomez‐Romero, Maria Lopez‐Gonzalvez, Maria Angeles Villaseñor, Alma Wijeyesekera, Anisha Barbas, Coral Modi, Neena Holmes, Elaine Garcia‐Perez, Isabel Multiplatform characterization of dynamic changes in breast milk during lactation |
title | Multiplatform characterization of dynamic changes in breast milk during lactation |
title_full | Multiplatform characterization of dynamic changes in breast milk during lactation |
title_fullStr | Multiplatform characterization of dynamic changes in breast milk during lactation |
title_full_unstemmed | Multiplatform characterization of dynamic changes in breast milk during lactation |
title_short | Multiplatform characterization of dynamic changes in breast milk during lactation |
title_sort | multiplatform characterization of dynamic changes in breast milk during lactation |
topic | Part III: Applications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744768/ https://www.ncbi.nlm.nih.gov/pubmed/25959062 http://dx.doi.org/10.1002/elps.201500011 |
work_keys_str_mv | AT andreasnicholasj multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT hydematthewj multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT gomezromeromaria multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT lopezgonzalvezmariaangeles multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT villasenoralma multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT wijeyesekeraanisha multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT barbascoral multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT modineena multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT holmeselaine multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation AT garciaperezisabel multiplatformcharacterizationofdynamicchangesinbreastmilkduringlactation |