Cargando…

Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy

OBJECTIVES: The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardn...

Descripción completa

Detalles Bibliográficos
Autores principales: Vinothkumar, Thilla Sekar, Kandaswamy, Deivanayagam, Prabhakaran, Gopalakrishnan, Rajadurai, Arunachalam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745232/
https://www.ncbi.nlm.nih.gov/pubmed/26929689
http://dx.doi.org/10.4103/1305-7456.172626
Descripción
Sumario:OBJECTIVES: The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardness and wear resistance between SM NiTi alloys following CT under two soaking temperatures and times. MATERIALS AND METHODS: The composition and the phase transformation behavior of the alloy were examined by X-ray energy dispersive spectroscopy and differential scanning calorimetry, respectively. Fifteen cylindrical specimens and 50 sheet specimens were subjected to different CT conditions: Deep cryogenic treatment (DCT) 24 group: −185°C, 24 h; DCT six group: −185°C, 6 h; shallow cryogenic treatment (SCT) 24 group: −80°C, 24 h; SCT six group: −80°C, 6 h; and control group. Wear resistance was assessed from weight loss before and after reciprocatory wet sliding wear. RESULTS: The as-received SM NiTi alloy contained 50.8 wt% nickel and possessed austenite finish temperature (A(f)) of 45.76°C. Reduction in Vickers hardness of specimens in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference [HSD]). The weight loss was significantly higher in DCT 24 group (P < 0.05; Tukey's HSD). CONCLUSION: Deep dry CT with 24 h soaking period significantly reduces the hardness and wear resistance of SM NiTi alloy.