Cargando…
Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy
OBJECTIVES: The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardn...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745232/ https://www.ncbi.nlm.nih.gov/pubmed/26929689 http://dx.doi.org/10.4103/1305-7456.172626 |
_version_ | 1782414606216462336 |
---|---|
author | Vinothkumar, Thilla Sekar Kandaswamy, Deivanayagam Prabhakaran, Gopalakrishnan Rajadurai, Arunachalam |
author_facet | Vinothkumar, Thilla Sekar Kandaswamy, Deivanayagam Prabhakaran, Gopalakrishnan Rajadurai, Arunachalam |
author_sort | Vinothkumar, Thilla Sekar |
collection | PubMed |
description | OBJECTIVES: The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardness and wear resistance between SM NiTi alloys following CT under two soaking temperatures and times. MATERIALS AND METHODS: The composition and the phase transformation behavior of the alloy were examined by X-ray energy dispersive spectroscopy and differential scanning calorimetry, respectively. Fifteen cylindrical specimens and 50 sheet specimens were subjected to different CT conditions: Deep cryogenic treatment (DCT) 24 group: −185°C, 24 h; DCT six group: −185°C, 6 h; shallow cryogenic treatment (SCT) 24 group: −80°C, 24 h; SCT six group: −80°C, 6 h; and control group. Wear resistance was assessed from weight loss before and after reciprocatory wet sliding wear. RESULTS: The as-received SM NiTi alloy contained 50.8 wt% nickel and possessed austenite finish temperature (A(f)) of 45.76°C. Reduction in Vickers hardness of specimens in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference [HSD]). The weight loss was significantly higher in DCT 24 group (P < 0.05; Tukey's HSD). CONCLUSION: Deep dry CT with 24 h soaking period significantly reduces the hardness and wear resistance of SM NiTi alloy. |
format | Online Article Text |
id | pubmed-4745232 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-47452322016-02-29 Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy Vinothkumar, Thilla Sekar Kandaswamy, Deivanayagam Prabhakaran, Gopalakrishnan Rajadurai, Arunachalam Eur J Dent Original Article OBJECTIVES: The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardness and wear resistance between SM NiTi alloys following CT under two soaking temperatures and times. MATERIALS AND METHODS: The composition and the phase transformation behavior of the alloy were examined by X-ray energy dispersive spectroscopy and differential scanning calorimetry, respectively. Fifteen cylindrical specimens and 50 sheet specimens were subjected to different CT conditions: Deep cryogenic treatment (DCT) 24 group: −185°C, 24 h; DCT six group: −185°C, 6 h; shallow cryogenic treatment (SCT) 24 group: −80°C, 24 h; SCT six group: −80°C, 6 h; and control group. Wear resistance was assessed from weight loss before and after reciprocatory wet sliding wear. RESULTS: The as-received SM NiTi alloy contained 50.8 wt% nickel and possessed austenite finish temperature (A(f)) of 45.76°C. Reduction in Vickers hardness of specimens in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference [HSD]). The weight loss was significantly higher in DCT 24 group (P < 0.05; Tukey's HSD). CONCLUSION: Deep dry CT with 24 h soaking period significantly reduces the hardness and wear resistance of SM NiTi alloy. Medknow Publications & Media Pvt Ltd 2015 /pmc/articles/PMC4745232/ /pubmed/26929689 http://dx.doi.org/10.4103/1305-7456.172626 Text en Copyright: © European Journal of Dentistry http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Vinothkumar, Thilla Sekar Kandaswamy, Deivanayagam Prabhakaran, Gopalakrishnan Rajadurai, Arunachalam Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy |
title | Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy |
title_full | Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy |
title_fullStr | Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy |
title_full_unstemmed | Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy |
title_short | Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy |
title_sort | effect of dry cryogenic treatment on vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745232/ https://www.ncbi.nlm.nih.gov/pubmed/26929689 http://dx.doi.org/10.4103/1305-7456.172626 |
work_keys_str_mv | AT vinothkumarthillasekar effectofdrycryogenictreatmentonvickershardnessandwearresistanceofnewmartensiticshapememorynickeltitaniumalloy AT kandaswamydeivanayagam effectofdrycryogenictreatmentonvickershardnessandwearresistanceofnewmartensiticshapememorynickeltitaniumalloy AT prabhakarangopalakrishnan effectofdrycryogenictreatmentonvickershardnessandwearresistanceofnewmartensiticshapememorynickeltitaniumalloy AT rajaduraiarunachalam effectofdrycryogenictreatmentonvickershardnessandwearresistanceofnewmartensiticshapememorynickeltitaniumalloy |