Cargando…

Hippocampal Neurophysiologic Changes after Mild Traumatic Brain Injury and Potential Neuromodulation Treatment Approaches

Traumatic brain injury (TBI) is the leading cause of death and disability in individuals below age 45, and five million Americans live with chronic disability as a result. Mild TBI (mTBI), defined as TBI in the absence of major imaging or histopathological defects, is responsible for a majority of c...

Descripción completa

Detalles Bibliográficos
Autores principales: Girgis, Fady, Pace, Jonathan, Sweet, Jennifer, Miller, Jonathan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746250/
https://www.ncbi.nlm.nih.gov/pubmed/26903824
http://dx.doi.org/10.3389/fnsys.2016.00008
Descripción
Sumario:Traumatic brain injury (TBI) is the leading cause of death and disability in individuals below age 45, and five million Americans live with chronic disability as a result. Mild TBI (mTBI), defined as TBI in the absence of major imaging or histopathological defects, is responsible for a majority of cases. Despite the lack of overt morphological defects, victims of mTBI frequently suffer lasting cognitive deficits, memory difficulties, and behavioral disturbances. There is increasing evidence that cognitive and memory dysfunction is related to subtle physiological changes that occur in the hippocampus, and these impact both the phenotype of deficits observed and subsequent recovery. Therapeutic modulation of physiological activity by means of medications commonly used for other indications or brain stimulation may represent novel treatment approaches. This review summarizes the present body of knowledge regarding neurophysiologic changes that occur in the hippocampus after mTBI, as well as potential targets for therapeutic modulation of neurologic activity.