Cargando…

MicroRNA Expression in β-Thalassemia and Sickle Cell Disease: A Role in The Induction of Fetal Hemoglobin

Today the regulatory role of microRNAs (miRs) is well characterized in many diverse cel- lular processes. MiR-based regulation is categorized under epigenetic regulatory mecha- nisms. These small non-coding RNAs participate in producing and maturing erythrocytes, expressing hematopoietic factors and...

Descripción completa

Detalles Bibliográficos
Autores principales: Saki, Najmaldin, Abroun, Saeid, Soleimani, Masoud, Kavianpour, Maria, Shahjahani, Mohammad, Mohammadi-Asl, Javad, Hajizamani, Saeideh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royan Institute 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746408/
https://www.ncbi.nlm.nih.gov/pubmed/26862517
Descripción
Sumario:Today the regulatory role of microRNAs (miRs) is well characterized in many diverse cel- lular processes. MiR-based regulation is categorized under epigenetic regulatory mecha- nisms. These small non-coding RNAs participate in producing and maturing erythrocytes, expressing hematopoietic factors and regulating expression of globin genes by post-tran- scriptional gene silencing. The changes in expression of miRs (miR-144/-320/-451/-503) in thalassemic/sickle cells compared with normal erythrocytes may cause clinical severity. According to the suppressive effects of certain miRs (miR-15a/-16-1/-23a/-26b/-27a/-451) on a number of transcription factors [myeloblastosis oncogene (MYB), B-cell lymphoma 11A (BCL11A), GATA1, Krüppel-like factor 3 (KLF3) and specificity protein 1 (Sp1)] during β globin gene expression, It has been possible to increasing γ globin gene expression and fetal hemoglobin (HbF) production. Therefore, this strategy can be used as a novel therapy in infusing HbF and improving clinical complications of patients with hemoglobi- nopathies.