Cargando…
Internal (His)(6)-tagging delivers a fully functional hetero-oligomeric class II chaperonin in high yield
Group II chaperonins are ATP-ases indispensable for the folding of many proteins that play a crucial role in Archaea and Eukarya. They display a conserved two-ringed assembly enclosing an internal chamber where newly translated or misfolded polypeptides can fold to their native structure. They are m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746591/ https://www.ncbi.nlm.nih.gov/pubmed/26856373 http://dx.doi.org/10.1038/srep20696 |
Sumario: | Group II chaperonins are ATP-ases indispensable for the folding of many proteins that play a crucial role in Archaea and Eukarya. They display a conserved two-ringed assembly enclosing an internal chamber where newly translated or misfolded polypeptides can fold to their native structure. They are mainly hexadecamers, with each eight-membered ring composed of one or two (in Archaea) or eight (in Eukarya) different subunits. A major recurring problem within group II chaperonin research, especially with the hetero-oligomeric forms, is to establish an efficient recombinant system for the expression of large amounts of wild-type as well as mutated variants. Herein we show how we can produce, in E. coli cells, unprecedented amounts of correctly assembled and active αβ-thermosome, the class II chaperonin from Thermoplasma acidophilum, by introducing a (His)(6)-tag within a loop in the α subunit of the complex. The specific location was identified via a rational approach and proved not to disturb the structure of the chaperonin, as demonstrated by size-exclusion chromatography, native gel electrophoresis and electron microscopy. Likewise, the tagged protein showed an ATP-ase activity and an ability to refold substrates identical to the wild type. This tagging strategy might be employed for the overexpression of other recombinant chaperonins. |
---|