Cargando…
Using a Machine Learning Approach to Predict Outcomes after Radiosurgery for Cerebral Arteriovenous Malformations
Predictions of patient outcomes after a given therapy are fundamental to medical practice. We employ a machine learning approach towards predicting the outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations (AVMs). Using three prospective databases, a machine learning appr...
Autores principales: | Oermann, Eric Karl, Rubinsteyn, Alex, Ding, Dale, Mascitelli, Justin, Starke, Robert M., Bederson, Joshua B., Kano, Hideyuki, Lunsford, L. Dade, Sheehan, Jason P., Hammerbacher, Jeffrey, Kondziolka, Douglas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746661/ https://www.ncbi.nlm.nih.gov/pubmed/26856372 http://dx.doi.org/10.1038/srep21161 |
Ejemplares similares
-
Trends and importance of radiosurgery for the development of functional neurosurgery
por: Kondziolka, Douglas, et al.
Publicado: (2012) -
Embolization and radiosurgery for arteriovenous malformations
por: Plasencia, Andres R., et al.
Publicado: (2012) -
A Multicenter Retrospective Study of Frameless Robotic Radiosurgery for Intracranial Arteriovenous Malformation
por: Oermann, Eric K., et al.
Publicado: (2014) -
Cerebral Arteriovenous Malformations: Evaluation and Management
por: Ajiboye, Norman, et al.
Publicado: (2014) -
Gamma Knife radiosurgery with CT image‐based dose calculation
por: Xu, Andy (Yuanguang), et al.
Publicado: (2015)