Cargando…

Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion

The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the nea...

Descripción completa

Detalles Bibliográficos
Autores principales: Romero, Elisabet, Augulis, Ramunas, Novoderezhkin, Vladimir I., Ferretti, Marco, Thieme, Jos, Zigmantas, Donatas, van Grondelle, Rienk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746732/
https://www.ncbi.nlm.nih.gov/pubmed/26870153
http://dx.doi.org/10.1038/nphys3017
Descripción
Sumario:The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre (PSII RC) by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge transfer states which we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies.