Cargando…

Pax6 in Collembola: Adaptive Evolution of Eye Regression

Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 c...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Ya-Nan, Li, Sheng, Luan, Yun-Xia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746759/
https://www.ncbi.nlm.nih.gov/pubmed/26856893
http://dx.doi.org/10.1038/srep20800
Descripción
Sumario:Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 cDNAs, Fc-Pax6 and Cd-Pax6, were cloned from an eyeless collembolan (Folsomia candida, soil-dwelling) and an eyed one (Ceratophysella denticulata, surface-dwelling), respectively. Their phylogenetic positions are between the two Pax6 paralogs in insects, eyeless (ey) and twin of eyeless (toy), and their protein sequences are more similar to Ey than to Toy. Both Fc-Pax6 and Cd-Pax6 could induce ectopic eyes in Drosophila, while Fc-Pax6 exhibited much weaker transactivation ability than Cd-Pax6. The C-terminus of collembolan Pax6 is indispensable for its transactivation ability, and determines the differences of transactivation ability between Fc-Pax6 and Cd-Pax6. One of the possible reasons is that Fc-Pax6 accumulated more mutations at some key functional sites of C-terminus under a lower selection pressure on eye development due to the dark habitats of F. candida. The composite data provide a first molecular evidence for the monophyletic origin of collembolan eyes, and indicate the eye degeneration of collembolans is caused by adaptive evolution.