Cargando…

Benefits of adopting good radiation practices in reducing the whole body radiation dose to the nuclear medicine personnel during (18)F-fluorodeoxyglucose positron emission tomography/computed tomography imaging

INTRODUCTION: Positron emission tomography has been established as an important imaging modality in the management of patients, especially in oncology. The higher gamma radiation energy of positron-emitting isotopes poses an additional radiation safety problem. Those working with this modality may l...

Descripción completa

Detalles Bibliográficos
Autores principales: Verma, Shashwat, Kheruka, Subhash Chand, Maurya, Anil Kumar, Kumar, Narvesh, Gambhir, Sanjay, Kumari, Sarita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746836/
https://www.ncbi.nlm.nih.gov/pubmed/26917890
http://dx.doi.org/10.4103/0972-3919.172348
Descripción
Sumario:INTRODUCTION: Positron emission tomography has been established as an important imaging modality in the management of patients, especially in oncology. The higher gamma radiation energy of positron-emitting isotopes poses an additional radiation safety problem. Those working with this modality may likely to receive higher whole body doses than those working only in conventional nuclear medicine. The radiation exposure to the personnel occurs in dispensing the dose, administration of activity, patient positioning, and while removing the intravenous (i.v.) cannula. The estimation of radiation dose to Nuclear Medicine Physician (NMP) involved during administration of activity to the patient and technical staff assisting in these procedures in a positron emission tomography/computed tomography (PET/CT) facility was carried out. MATERIALS AND METHODS: An i.v access was secured for the patient by putting the cannula and blood sugar was monitored. The activity was then dispensed and measured in the dose calibrator and administered to the patient by NMP. Personnel doses received by NMP and technical staff were measured using electronic pocket dosimeter. The radiation exposure levels at various working locations were assessed with the help of gamma survey meter. RESULTS AND DISCUSSION: The radiation level at working distance while administering the radioactivity was found to be 106–170 μSv/h with a mean value of 126.5 ± 14.88 μSv/h which was reduced to 4.2–14.2 μSv/h with a mean value of 7.16 ± 2.29 μSv/h with introduction of L-bench for administration of radioactivity. This shows a mean exposure level reduction of 94.45 ± 1.03%. The radiation level at working distance, while removing the i.v. cannula postscanning was found to be 25–70 μSv/h with a mean value of 37.4 ± 13.16 μSv/h which was reduced to 1.0–5.0 μSv/h with a mean value of 2.77 ± 1.3 μSv/h with introduction of L-bench for removal of i.v cannula. This shows a mean exposure level reduction of 92.85 ± 1.78%. CONCLUSION: This study shows that good radiation practices are very helpful in reducing the personnel radiation doses. Use of radiation protection devices such as L-bench reduces exposure significantly. PET/CT staff members must use their personnel monitors diligently and should do so in a consistent manner so that comparisons of their doses are meaningful from one monitoring period to the next.