Cargando…
Deconvoluting the complexity of autophagy and Parkinson's disease for potential therapeutic purpose
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the preferential death of dopaminergic neurons. In the past two decades, great progress has been made toward understanding the pathogenesis of PD; however, its precise pathogenesis still remains unclear. Recently, accumul...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747347/ https://www.ncbi.nlm.nih.gov/pubmed/26415234 |
Sumario: | Parkinson's disease (PD) is a neurodegenerative disorder characterized by the preferential death of dopaminergic neurons. In the past two decades, great progress has been made toward understanding the pathogenesis of PD; however, its precise pathogenesis still remains unclear. Recently, accumulating evidence has suggested that macroautophagy (herein referred to as autophagy) is tightly linked to PD. Dysregulation of autophagic pathways has been observed in the brains of PD patients and in animal models of PD. More importantly, a number of PD-associated proteins, such as α-synuclein, LRRK2, Parkin and PINK1 have been further revealed to be involved in autophagy. Thus, it is now acknowledged that constitutive autophagy is essential for neuronal survival and that dysregulation of autophagy leads to PD. In this review, we focus on summarizing the relationships amongst PD-associated proteins, autophagy and PD. Moreover, we also demonstrate some autophagy-modulating compounds and autophagic microRNAs in PD models, which may provide better promising strategies for potential PD therapy. |
---|