Cargando…
Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122
Although altered metabolic pathway is an important diagnostic maker and therapeutic target in cancer, it is poorly understood in cancer stem cells (CSCs). Here we show that the CD133 (+) hepatocellular CSCs have distinct metabolic properties, characterized by more active glycolysis over oxidative ph...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747371/ https://www.ncbi.nlm.nih.gov/pubmed/26506419 |
Sumario: | Although altered metabolic pathway is an important diagnostic maker and therapeutic target in cancer, it is poorly understood in cancer stem cells (CSCs). Here we show that the CD133 (+) hepatocellular CSCs have distinct metabolic properties, characterized by more active glycolysis over oxidative phosphorylation, compared to the CD133 (−) cells. Inhibition of PDK4 and LDHA markedly suppresses CD133 (+) stemness characteristics and overcome resistance to sorafenib (current chemotherapeutic agent for hepatocellular cancer). Addition of glucose or lactate to CD133 (−) cells promotes CSC phenotypes, as evidenced by increased CD133 (+) cell population, elevated stemness gene expression and enhanced spheroid formation. Furthermore, the liver-specific miRNA, miR-122, inhibits CSC phenotypes by regulating glycolysis through targeting PDK4. Our findings suggest that enhanced glycolysis is associated with CD133 (+) stem-like characteristics and that metabolic reprogramming through miR-122 or PDK4 may represent a novel therapeutic approach for the treatment of hepatocellular cancer. |
---|