Cargando…

Assessment of the Microbial Constituents of the Home Environment of Individuals with Cystic Fibrosis (CF) and Their Association with Lower Airways Infections

INTRODUCTION: Cystic fibrosis (CF) airways are colonized by a polymicrobial community of organisms, termed the CF microbiota. We sought to define the microbial constituents of the home environment of individuals with CF and determine if it may serve as a latent reservoir for infection. METHODS: Six...

Descripción completa

Detalles Bibliográficos
Autores principales: Heirali, Alya, McKeon, Suzanne, Purighalla, Swathi, Storey, Douglas G., Rossi, Laura, Costilhes, Geoffrey, Drews, Steven J., Rabin, Harvey R., Surette, Michael G., Parkins, Michael D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747485/
https://www.ncbi.nlm.nih.gov/pubmed/26859493
http://dx.doi.org/10.1371/journal.pone.0148534
Descripción
Sumario:INTRODUCTION: Cystic fibrosis (CF) airways are colonized by a polymicrobial community of organisms, termed the CF microbiota. We sought to define the microbial constituents of the home environment of individuals with CF and determine if it may serve as a latent reservoir for infection. METHODS: Six patients with newly identified CF pathogens were included. An investigator collected repeat sputum and multiple environmental samples from their homes. Bacteria were cultured under both aerobic and anaerobic conditions. Morphologically distinct colonies were selected, purified and identified to the genus and species level through 16S rRNA gene sequencing. When concordant organisms were identified in sputum and environment, pulsed-field gel electrophoresis (PFGE) was performed to determine relatedness. Culture-independent bacterial profiling of each sample was carried out by Illumina sequencing of the V3 region of the 16s RNA gene. RESULTS: New respiratory pathogens prompting investigation included: Mycobacterium abscessus(2), Stenotrophomonas maltophilia(3), Pseudomonas aeruginosa(3), Pseudomonas fluorescens(1), Nocardia spp.(1), and Achromobacter xylosoxidans(1). A median 25 organisms/patient were cultured from sputum. A median 125 organisms/home were cultured from environmental sites. Several organisms commonly found in the CF lung microbiome were identified within the home environments of these patients. Concordant species included members of the following genera: Brevibacterium(1), Microbacterium(1), Staphylococcus(3), Stenotrophomonas(2), Streptococcus(2), Sphingomonas(1), and Pseudomonas(4). PFGE confirmed related strains (one episode each of Sphinogomonas and P. aeruginosa) from the environment and airways were identified in two patients. Culture-independent assessment confirmed that many organisms were not identified using culture-dependent techniques. CONCLUSIONS: Members of the CF microbiota can be found as constituents of the home environment in individuals with CF. While the majority of isolates from the home environment were not genetically related to those isolated from the lower airways of individuals with CF suggesting alternate sources of infection were more common, a few genetically related isolates were indeed identified. As such, the home environment may rarely serve as either the source of infection or a persistent reservoir for re-infection after clearance.