Cargando…

Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch

Starch retrogradation is a term used to define the process in which gelatinized starch undergoes a disorder-to-order transition. A thorough understanding of starch retrogradation behavior plays an important role in maintaining the quality of starchy foods during storage. By means of DSC, we have dem...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shujun, Li, Caili, Zhang, Xiu, Copeland, Les, Wang, Shuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748231/
https://www.ncbi.nlm.nih.gov/pubmed/26860788
http://dx.doi.org/10.1038/srep20965
Descripción
Sumario:Starch retrogradation is a term used to define the process in which gelatinized starch undergoes a disorder-to-order transition. A thorough understanding of starch retrogradation behavior plays an important role in maintaining the quality of starchy foods during storage. By means of DSC, we have demonstrated for the first time that at low water contents, the enthalpy change of retrograded starch is higher than that of native starch. In terms of FTIR and Raman spectroscopic results, we showed that the molecular order of reheated retrograded starch samples is lower than that of DSC gelatinized starch. These findings have led us to conclude that enthalpy change of retrograded starch at low water contents involves the melting of recrystallized starch during storage and residual starch crystallites after DSC gelatinization, and that the endothermic transition of retrograded starch gels at low water contents does not fully represent the retrogradation behavior of starch. Very low or high water contents do not favor the occurrence of starch retrogradation.