Cargando…

Onset and duration of transitions into Greenland Interstadials 15.2 and 14 in northern China constrained by an annually laminated stalagmite

The onset and duration of abrupt transitions into Dansgaard-Oeschger (DO) events can be studied in detail in Greenland ice cores given the excellent relative uncertainty of its lamina-counting chronology. For other geological archives, however, the shorter intervals are not determined accurately due...

Descripción completa

Detalles Bibliográficos
Autores principales: Duan, Wuhui, Cheng, Hai, Tan, Ming, Edwards, R. Lawrence
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748405/
https://www.ncbi.nlm.nih.gov/pubmed/26861508
http://dx.doi.org/10.1038/srep20844
Descripción
Sumario:The onset and duration of abrupt transitions into Dansgaard-Oeschger (DO) events can be studied in detail in Greenland ice cores given the excellent relative uncertainty of its lamina-counting chronology. For other geological archives, however, the shorter intervals are not determined accurately due to lack of clear annual lamina. Here, we present an oxygen isotope record of a stalagmite with well-developed annual lamina from Xinglong Cave, northern China, covering DO 15 and 14. Except for the absence of Greenland Interstadial (GIS) 15.1, the pattern of this record strongly resembles that of Greenland ice cores on millennial scales as well as the detailed centennial-scale cooling excursions within GIS 14. Additionally, the transitions into GIS 15.2 and 14, constrained by lamina counting, lasted 74 and 27 yr, respectively, both of which are in excellent agreement with that of the NGRIP record on the GICC05 timescales (100 ± 6 and 20 ± 1 yr, respectively). The close coupling of abrupt climatic oscillations on millennial to decadal scales between Greenland and northern China implies a rapid atmospheric teleconnection between the North Atlantic and the East Asian Summer Monsoon regions, probably via the westerlies.