Cargando…
Reporting phenotypes in mouse models when considering body size as a potential confounder
Genotype-phenotype studies aim to identify causative relationships between genes and phenotypes. The International Mouse Phenotyping Consortium is a high throughput phenotyping program whose goal is to collect phenotype data for a knockout mouse strain of every protein coding gene. The scale of the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748495/ https://www.ncbi.nlm.nih.gov/pubmed/26865945 http://dx.doi.org/10.1186/s13326-016-0050-8 |
Sumario: | Genotype-phenotype studies aim to identify causative relationships between genes and phenotypes. The International Mouse Phenotyping Consortium is a high throughput phenotyping program whose goal is to collect phenotype data for a knockout mouse strain of every protein coding gene. The scale of the project requires an automatic analysis pipeline to detect abnormal phenotypes, and disseminate the resulting gene-phenotype annotation data into public resources. A body weight phenotype is a common result of knockout studies. As body weight correlates with many other biological traits, this challenges the interpretation of related gene-phenotype associations. Co-correlation can lead to gene-phenotype associations that are potentially misleading. Here we use statistical modelling to account for body weight as a potential confounder to assess the impact. We find that there is a considerable impact on previously established gene-phenotype associations due to an increase in sensitivity as well as the confounding effect. We investigated the existing ontologies to represent this phenotypic information and we explored ways to ontologically represent the results of the influence of confounders on gene-phenotype associations. With the scale of data being disseminated within the high throughput programs and the range of downstream studies that utilise these data, it is critical to consider how we improve the quality of the disseminated data and provide a robust ontological representation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13326-016-0050-8) contains supplementary material, which is available to authorized users. |
---|