Cargando…

When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis

A striking contrast runs through the last 60 years of biopharmaceutical discovery, research, and development. Huge scientific and technological gains should have increased the quality of academic science and raised industrial R&D efficiency. However, academia faces a "reproducibility crisis...

Descripción completa

Detalles Bibliográficos
Autores principales: Scannell, Jack W., Bosley, Jim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749240/
https://www.ncbi.nlm.nih.gov/pubmed/26863229
http://dx.doi.org/10.1371/journal.pone.0147215
_version_ 1782415248877158400
author Scannell, Jack W.
Bosley, Jim
author_facet Scannell, Jack W.
Bosley, Jim
author_sort Scannell, Jack W.
collection PubMed
description A striking contrast runs through the last 60 years of biopharmaceutical discovery, research, and development. Huge scientific and technological gains should have increased the quality of academic science and raised industrial R&D efficiency. However, academia faces a "reproducibility crisis"; inflation-adjusted industrial R&D costs per novel drug increased nearly 100 fold between 1950 and 2010; and drugs are more likely to fail in clinical development today than in the 1970s. The contrast is explicable only if powerful headwinds reversed the gains and/or if many "gains" have proved illusory. However, discussions of reproducibility and R&D productivity rarely address this point explicitly. The main objectives of the primary research in this paper are: (a) to provide quantitatively and historically plausible explanations of the contrast; and (b) identify factors to which R&D efficiency is sensitive. We present a quantitative decision-theoretic model of the R&D process. The model represents therapeutic candidates (e.g., putative drug targets, molecules in a screening library, etc.) within a “measurement space", with candidates' positions determined by their performance on a variety of assays (e.g., binding affinity, toxicity, in vivo efficacy, etc.) whose results correlate to a greater or lesser degree. We apply decision rules to segment the space, and assess the probability of correct R&D decisions. We find that when searching for rare positives (e.g., candidates that will successfully complete clinical development), changes in the predictive validity of screening and disease models that many people working in drug discovery would regard as small and/or unknowable (i.e., an 0.1 absolute change in correlation coefficient between model output and clinical outcomes in man) can offset large (e.g., 10 fold, even 100 fold) changes in models’ brute-force efficiency. We also show how validity and reproducibility correlate across a population of simulated screening and disease models. We hypothesize that screening and disease models with high predictive validity are more likely to yield good answers and good treatments, so tend to render themselves and their diseases academically and commercially redundant. Perhaps there has also been too much enthusiasm for reductionist molecular models which have insufficient predictive validity. Thus we hypothesize that the average predictive validity of the stock of academically and industrially "interesting" screening and disease models has declined over time, with even small falls able to offset large gains in scientific knowledge and brute-force efficiency. The rate of creation of valid screening and disease models may be the major constraint on R&D productivity.
format Online
Article
Text
id pubmed-4749240
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47492402016-02-26 When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis Scannell, Jack W. Bosley, Jim PLoS One Research Article A striking contrast runs through the last 60 years of biopharmaceutical discovery, research, and development. Huge scientific and technological gains should have increased the quality of academic science and raised industrial R&D efficiency. However, academia faces a "reproducibility crisis"; inflation-adjusted industrial R&D costs per novel drug increased nearly 100 fold between 1950 and 2010; and drugs are more likely to fail in clinical development today than in the 1970s. The contrast is explicable only if powerful headwinds reversed the gains and/or if many "gains" have proved illusory. However, discussions of reproducibility and R&D productivity rarely address this point explicitly. The main objectives of the primary research in this paper are: (a) to provide quantitatively and historically plausible explanations of the contrast; and (b) identify factors to which R&D efficiency is sensitive. We present a quantitative decision-theoretic model of the R&D process. The model represents therapeutic candidates (e.g., putative drug targets, molecules in a screening library, etc.) within a “measurement space", with candidates' positions determined by their performance on a variety of assays (e.g., binding affinity, toxicity, in vivo efficacy, etc.) whose results correlate to a greater or lesser degree. We apply decision rules to segment the space, and assess the probability of correct R&D decisions. We find that when searching for rare positives (e.g., candidates that will successfully complete clinical development), changes in the predictive validity of screening and disease models that many people working in drug discovery would regard as small and/or unknowable (i.e., an 0.1 absolute change in correlation coefficient between model output and clinical outcomes in man) can offset large (e.g., 10 fold, even 100 fold) changes in models’ brute-force efficiency. We also show how validity and reproducibility correlate across a population of simulated screening and disease models. We hypothesize that screening and disease models with high predictive validity are more likely to yield good answers and good treatments, so tend to render themselves and their diseases academically and commercially redundant. Perhaps there has also been too much enthusiasm for reductionist molecular models which have insufficient predictive validity. Thus we hypothesize that the average predictive validity of the stock of academically and industrially "interesting" screening and disease models has declined over time, with even small falls able to offset large gains in scientific knowledge and brute-force efficiency. The rate of creation of valid screening and disease models may be the major constraint on R&D productivity. Public Library of Science 2016-02-10 /pmc/articles/PMC4749240/ /pubmed/26863229 http://dx.doi.org/10.1371/journal.pone.0147215 Text en © 2016 Scannell, Bosley http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Scannell, Jack W.
Bosley, Jim
When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis
title When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis
title_full When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis
title_fullStr When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis
title_full_unstemmed When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis
title_short When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis
title_sort when quality beats quantity: decision theory, drug discovery, and the reproducibility crisis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749240/
https://www.ncbi.nlm.nih.gov/pubmed/26863229
http://dx.doi.org/10.1371/journal.pone.0147215
work_keys_str_mv AT scannelljackw whenqualitybeatsquantitydecisiontheorydrugdiscoveryandthereproducibilitycrisis
AT bosleyjim whenqualitybeatsquantitydecisiontheorydrugdiscoveryandthereproducibilitycrisis