Cargando…
Combining Amplitude Spectrum Area with Previous Shock Information Using Neural Networks Improves Prediction Performance of Defibrillation Outcome for Subsequent Shocks in Out-Of-Hospital Cardiac Arrest Patients
OBJECTIVE: Quantitative ventricular fibrillation (VF) waveform analysis is a potentially powerful tool to optimize defibrillation. However, whether combining VF features with additional attributes that related to the previous shock could enhance the prediction performance for subsequent shocks is st...
Autores principales: | He, Mi, Lu, Yubao, Zhang, Lei, Zhang, Hehua, Gong, Yushun, Li, Yongqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749245/ https://www.ncbi.nlm.nih.gov/pubmed/26863222 http://dx.doi.org/10.1371/journal.pone.0149115 |
Ejemplares similares
-
Predict Defibrillation Outcome Using Stepping Increment of Poincare Plot for Out-of-Hospital Ventricular Fibrillation Cardiac Arrest
por: Gong, Yushun, et al.
Publicado: (2015) -
Combining multiple ECG features does not improve prediction of defibrillation outcome compared to single features in a large population of out-of-hospital cardiac arrests
por: He, Mi, et al.
Publicado: (2015) -
The number of prehospital defibrillation shocks and 1-month survival in patients with out-of-hospital cardiac arrest
por: Hasegawa, Manabu, et al.
Publicado: (2015) -
Estimating the amplitude spectrum area of ventricular fibrillation during cardiopulmonary resuscitation using only ECG waveform
por: Zuo, Feng, et al.
Publicado: (2021) -
Real-time amplitude spectrum area estimation during chest compression from the ECG waveform using a 1D convolutional neural network
por: Zuo, Feng, et al.
Publicado: (2023)