Cargando…
A K(+)-selective CNG channel orchestrates Ca(2+) signalling in zebrafish sperm
Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca(2+) signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K(+) channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes C...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749565/ https://www.ncbi.nlm.nih.gov/pubmed/26650356 http://dx.doi.org/10.7554/eLife.07624 |
Sumario: | Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca(2+) signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K(+) channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca(2+) influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca(2+) entry. Ca(2+) induces spinning-like swimming, different from swimming of sperm from other species. The “spinning” mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization. DOI: http://dx.doi.org/10.7554/eLife.07624.001 |
---|