Cargando…
ChemTok: A New Rule Based Tokenizer for Chemical Named Entity Recognition
Named Entity Recognition (NER) from text constitutes the first step in many text mining applications. The most important preliminary step for NER systems using machine learning approaches is tokenization where raw text is segmented into tokens. This study proposes an enhanced rule based tokenizer, C...
Autores principales: | Akkasi, Abbas, Varoğlu, Ekrem, Dimililer, Nazife |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749772/ https://www.ncbi.nlm.nih.gov/pubmed/26942193 http://dx.doi.org/10.1155/2016/4248026 |
Ejemplares similares
-
tmChem: a high performance approach for chemical named entity recognition and normalization
por: Leaman, Robert, et al.
Publicado: (2015) -
Single Model for Organic and Inorganic Chemical Named
Entity Recognition in ChemDataExtractor
por: Isazawa, Taketomo, et al.
Publicado: (2022) -
NERChem: adapting NERBio to chemical patents via full-token features and named entity feature with chemical sub-class composition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2016) -
Context-aware multi-token concept recognition of biological entities
por: Kim, Kwangmin, et al.
Publicado: (2021) -
Enhancing of chemical compound and drug name recognition using representative tag scheme and fine-grained tokenization
por: Dai, Hong-Jie, et al.
Publicado: (2015)