Cargando…

Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide

Type I interferon (IFN) is crucial in host antiviral defense. Previous studies have described the pleiotropic role of type I IFNs on innate and adaptive immune cells during viral infection. Here, we demonstrate that natural killer (NK) cells from mice lacking the type I IFN-α receptor (Ifnar(−/−)) o...

Descripción completa

Detalles Bibliográficos
Autores principales: Madera, Sharline, Rapp, Moritz, Firth, Matthew A., Beilke, Joshua N., Lanier, Lewis L., Sun, Joseph C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749923/
https://www.ncbi.nlm.nih.gov/pubmed/26755706
http://dx.doi.org/10.1084/jem.20150712
Descripción
Sumario:Type I interferon (IFN) is crucial in host antiviral defense. Previous studies have described the pleiotropic role of type I IFNs on innate and adaptive immune cells during viral infection. Here, we demonstrate that natural killer (NK) cells from mice lacking the type I IFN-α receptor (Ifnar(−/−)) or STAT1 (which signals downstream of IFNAR) are defective in expansion and memory cell formation after mouse cytomegalovirus (MCMV) infection. Despite comparable proliferation, Ifnar(−/−) NK cells showed diminished protection against MCMV infection and exhibited more apoptosis compared with wild-type NK cells. Furthermore, we show that Ifnar(−/−) NK cells express increased levels of NK group 2 member D (NKG2D) ligands during viral infection and are susceptible to NK cell–mediated fratricide in a perforin- and NKG2D-dependent manner. Adoptive transfer of Ifnar(−/−) NK cells into NK cell–deficient mice reverses the defect in survival and expansion. Our study reveals a novel type I IFN–dependent mechanism by which NK cells evade mechanisms of cell death after viral infection.