Cargando…
Learning (from) the errors of a systems biology model
Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological sy...
Autores principales: | Engelhardt, Benjamin, Frőhlich, Holger, Kschischo, Maik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749970/ https://www.ncbi.nlm.nih.gov/pubmed/26865316 http://dx.doi.org/10.1038/srep20772 |
Ejemplares similares
-
A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models
por: Engelhardt, Benjamin, et al.
Publicado: (2017) -
Searching for Errors in Models of Complex Dynamic Systems
por: Kahl, Dominik, et al.
Publicado: (2021) -
Generation of realistic synthetic data using Multimodal Neural Ordinary Differential Equations
por: Wendland, Philipp, et al.
Publicado: (2022) -
MFmap: A semi-supervised generative model matching cell lines to tumours and cancer subtypes
por: Zhang, Xiaoxiao, et al.
Publicado: (2021) -
Machine learning models for predicting severe COVID-19 outcomes in hospitals
por: Wendland, Philipp, et al.
Publicado: (2023)