Cargando…

Picosecond metrology of laser-driven proton bursts

Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inhere...

Descripción completa

Detalles Bibliográficos
Autores principales: Dromey, B., Coughlan, M., Senje, L., Taylor, M., Kuschel, S., Villagomez-Bernabe, B., Stefanuik, R., Nersisyan, G., Stella, L., Kohanoff, J., Borghesi, M., Currell, F., Riley, D., Jung, D., Wahlström, C.-G., Lewis, C.L.S., Zepf, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749984/
https://www.ncbi.nlm.nih.gov/pubmed/26861592
http://dx.doi.org/10.1038/ncomms10642
Descripción
Sumario:Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter.