Cargando…
Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity
BACKGROUND: High throughput technologies have been used to profile genes in multiple different dimensions, such as genetic variation, copy number, gene and protein expression, epigenetics, metabolomics. Computational analyses often treat these different data types as independent, leading to an explo...
Autores principales: | Pavel, Ana B., Sonkin, Dmitriy, Reddy, Anupama |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750289/ https://www.ncbi.nlm.nih.gov/pubmed/26864072 http://dx.doi.org/10.1186/s12918-016-0260-9 |
Ejemplares similares
-
Integrating mutation and gene expression cross-sectional data to infer cancer progression
por: Fleck, Julia L., et al.
Publicado: (2016) -
An integrative U method for joint analysis of multi-level omic data
por: Geng, Pei, et al.
Publicado: (2019) -
Microbial risk score for capturing microbial characteristics, integrating multi-omics data, and predicting disease risk
por: Wang, Chan, et al.
Publicado: (2022) -
Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data
por: Gong, Wuming, et al.
Publicado: (2015) -
A multi-omics approach for identifying important pathways and genes in human cancer
por: Frost, H. Robert, et al.
Publicado: (2018)