Cargando…
Model-based clustering based on sparse finite Gaussian mixtures
In the framework of Bayesian model-based clustering based on a finite mixture of Gaussian distributions, we present a joint approach to estimate the number of mixture components and identify cluster-relevant variables simultaneously as well as to obtain an identified model. Our approach consists in...
Autores principales: | Malsiner-Walli, Gertraud, Frühwirth-Schnatter, Sylvia, Grün, Bettina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750551/ https://www.ncbi.nlm.nih.gov/pubmed/26900266 http://dx.doi.org/10.1007/s11222-014-9500-2 |
Ejemplares similares
-
From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering
por: Frühwirth-Schnatter, Sylvia, et al.
Publicado: (2018) -
Identifying Mixtures of Mixtures Using Bayesian Estimation
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2017) -
How many data clusters are in the Galaxy data set?: Bayesian cluster analysis in action
por: Grün, Bettina, et al.
Publicado: (2021) -
Finite mixture and Markov switching models
por: Frühwirth-Schnatter, Sylvia
Publicado: (2006) -
Semi‐parametric Regression under Model Uncertainty: Economic Applications
por: Malsiner‐Walli, Gertraud, et al.
Publicado: (2019)