Cargando…
Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring
Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentat...
Autores principales: | Miner, Daniel, Triesch, Jochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750861/ https://www.ncbi.nlm.nih.gov/pubmed/26866369 http://dx.doi.org/10.1371/journal.pcbi.1004759 |
Ejemplares similares
-
Correction: Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring
Publicado: (2016) -
Self-organization of complex cortex-like wiring in a spiking neural network model
por: Miner, Daniel, et al.
Publicado: (2015) -
Competition for synaptic building blocks shapes synaptic plasticity
por: Triesch, Jochen, et al.
Publicado: (2018) -
A unifying theory of synaptic long-term plasticity based on a sparse distribution of synaptic strength
por: Krieg, Daniel, et al.
Publicado: (2014) -
Network Self-Organization Explains the Statistics and Dynamics of Synaptic Connection Strengths in Cortex
por: Zheng, Pengsheng, et al.
Publicado: (2013)